留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of zoom fish-eye lens systems

Hou Guozhu Lu Lijun

侯国柱, 吕丽军. 变焦鱼眼镜头系统设计[J]. 红外与激光工程, 2020, 49(7): 20190519. doi: 10.3788/IRLA20190519
引用本文: 侯国柱, 吕丽军. 变焦鱼眼镜头系统设计[J]. 红外与激光工程, 2020, 49(7): 20190519. doi: 10.3788/IRLA20190519
Hou Guozhu, Lu Lijun. Design of zoom fish-eye lens systems[J]. Infrared and Laser Engineering, 2020, 49(7): 20190519. doi: 10.3788/IRLA20190519
Citation: Hou Guozhu, Lu Lijun. Design of zoom fish-eye lens systems[J]. Infrared and Laser Engineering, 2020, 49(7): 20190519. doi: 10.3788/IRLA20190519

变焦鱼眼镜头系统设计

doi: 10.3788/IRLA20190519
详细信息
  • 中图分类号: TN202; TH703

Design of zoom fish-eye lens systems

Funds: National Natural Science Foundation of China (NSFC) (Grant No. 61975111)
More Information
    Author Bio:

    侯国柱(1976-),男,工程师,博士,主要从事超大视场光学系统设计方面的研究。Email:hougz@sdju.edu.cn

    Corresponding author: 吕丽军(1963-),男,教授,博士生导师,主要从事真空紫外、软X射线光学及超大视场光学系统等方面的研究。Email:lulijun@shu.edu.cn
  • 摘要: 变焦鱼眼镜头系统具有更大的视场角、更大的相对孔径、更大的反远比的特点。文中的设计过程中,首先,利用平面对称光学系统理论设计了固定焦距的鱼眼镜头初始结构;然后,把此鱼眼镜头的组元划分为前变焦组和后变焦组两个变焦组,并利用了高斯光学理论对整个变焦镜头进行了变焦优化;最后,得到一成像质量良好的变焦鱼眼镜头。该镜头最短焦距8 mm时的视场角为180°,最长焦距16 mm时的视场角为90°,其相对孔径为1/3.5。设计结果表明:该变焦鱼眼镜头系统的调制传递函数(MTF)数值在不同的焦距长度、空间频率为50 lp/mm时均不低于0.45,该变焦鱼眼镜头物镜比其他变焦鱼眼镜头具有更好的成像质量。
  • Figure  1.  Conjugate distance graph of Φ1 and Φ2 groups

    Figure  2.  Circle radius diagram of field of view. Radius of the image plane is 12.303 mm, aspect ratio of the image plane is 4:3, length of the long side is 13.648 9 mm, and length of the wide side is 10.236 7 mm

    Figure  3.  Optical scheme of a principle ray passing the negative meniscus lens

    Figure  4.  Structural schematic of former-group lenses

    Figure  5.  Structural schematic of rear-group lenses. the eleventh and thirteenth lenses are independent spherical lenses. The last plane is the image plane

    Figure  6.  Zoom-group planning. The first group is the front zoom group, the second group is the rear zoom group, and the last plane is the image plane

    Figure  7.  Optical path layout of three zoom states of the system. The first is the short-focal-length position with 8 mm system focal length, the second the medium-focal-length position with 12 mm system focal length, and the third the long-focal-length position with 16 mm system focal length

    Figure  8.  MTF curves of zoom fish-eye lens system with (a) 8 mm focal length and 180° FOV angle, (b) 12 mm focal length and 120° FOV angle, and (c) 16 mm focal length and 90° FOV angle

    Figure  9.  Field curvature and distortion curves for (a) short-focal-length (f=8 mm), and (b) long-focal-length (f=16 mm) positions

    Figure  10.  Relative illumination curves at short-focal-length (f=8 mm) position

    Table  1.   Design specifications

    Focal length stateShortMiddleLong
    Focal length/mm81216
    F number3.53.53.5
    FOV/(°)18012090
    BFD/mm173042
    Design spectrumVisible light (F, D, C)
    Maximum lens clear aperture /mm82
    Object locationAt infinity
    下载: 导出CSV

    Table  2.   Zoom fish-eye system lens data

    Surface
    No.
    Radius of
    curvature/mm
    Thickness
    /mm
    Clear semi-
    diameter/mm
    Material
    ObjectInfinityInfinityInfinity
    163.7805.00041.339N-LASF44
    221.27517.74321.196
    3111.33515.00020.895N-LASF31A
    424.4775.93511.815
    5−27.4551.50011.638N-PSK57
    624.0850.50110.935
    726.0564.74010.976SF6
    8−34.0850.99910.908
    9−24.2925.20810.706N-LASF31
    10−114.211T10 (variable)10.548
    1142.00413.8838.609N-LASF31A
    122919.0580.3107.609
    13(stop)Infinity0.1007.565
    14166.1201.5007.652N-LASF31A
    1518.6543.3888.087K3
    16−37.7110.1008.283
    1729.2324.3669.190N-FK5
    18−21.0841.5009.271N-LASF31A
    19147.6450.10010.014
    2045.44211.61610.449TIFN5
    21−28.9070.10011.721
    22−332.1061.50011.721N-LASF40
    2322.8175.80711.800N-PK52A
    24−46.2049.14011.955
    2539.68015.00013.434N-FK5
    26124.266T26 (variable)12.861
    ImageInfinity12.303
    下载: 导出CSV

    Table  3.   Multi-configuration data

    Focal-length stateShortMiddleLong
    Focal-length /mm81216
    T10 /mm21.7619.3503.167
    T26 /mm17.16729.57841.952
    下载: 导出CSV
  • [1] Yan Yufeng, Sasian Jose. Photographic zoom fisheye lens design for DSLR cameras [J]. Opt Eng, 2017, 56(9): 095103.
    [2] Michael P C. Aberrations of holographic toroidal grating systems [J]. Appl Opt, 1983, 22: 1508−1518. doi:  10.1364/AO.22.001508
    [3] Lu Lijun. Aberration theory of plane-symmetric grating systems [J]. Synchrotron Radiat., 2008, 15: 399−410. doi:  10.1107/S0909049508003658
    [4] José Sasián. Theory of sixth-order wave aberrations [J]. Appl Opt, 2010, 49: D69−D95. doi:  10.1364/AO.49.000D69
    [5] Hou Guozhu, Lu Lijun. Design of fisheye lens system in visible light range [J]. Optics & Optoelectronic Technology, 2018, 16(3): 90−95.
    [6] Tao Chunkan. Zoom Lens Design[M]. Beijing: National Defense Industry Press,1988.(in Chinese)
    [7] Lu Lijun, Wu Xuewei. Design of initial structure of fisheye lens [J]. Acta Optica Sinica, 2017, 37(2): 0208001. doi:  10.3788/AOS201737.0208001
    [8] Kumler James J, Bauer Martin L.Fish-eye lens designs and their relative performance[C]//Proc SPIE, 2000,4093: 360-369.
    [9] Lu Lijun, Deng Zhiyong. Geometric characteristics of aberrations of plane-symmetric optical systems [J]. Appl Opt, 2009, 48: 6946−6960. doi:  10.1364/AO.48.006946
    [10] Wang Yongzhong. Fisheye Lens Optics[M]. Beijing: China Science Publishing and Media, 2006.(in Chinese)
    [11] Thompson Kevin P. Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: spherical aberration [J]. Opt Soc Am A, 2011, 28: 821−836. doi:  10.1364/JOSAA.28.000821
    [12] Lu Lijun , Cao Yiqing. Sixth-order wave aberration theory of ultra-wide-angle optical systems [J]. Appl Opt, 2017, 56: 8570−8583. doi:  10.1364/AO.56.008570
    [13] Lu Lijun, Liu Meng, Shi Ye. Correction method of image distortion of fisheye lens [J]. Infrared and Laser Engineering, 2019, 48(9): 0926002. (in Chinese) doi:  10.3788/IRLA201948.0926002
    [14] Hou Guozhu, Lu Lijun. Design of large aperture zoom projection lens [J]. Journal of Applied Optics, 2018, 39(3): 405−411.
    [15] Lu Lijun, Hu Xiaoyan, Sheng Cuiyuan. Optimization method for ultra-wide-angle and panoramic optical systems [J]. Appl Opt, 2012, 51: 3776−3786. doi:  10.1364/AO.51.003776
  • [1] Yang Guoqing, Li Zhou, Zhao Chen, Yu Yi, Qiao Yanfeng, He Fengyun.  Nonlinear atmospheric correction based on neural network for infrared target radiometry . 红外与激光工程, 2020, 49(5): 20190413-20190413-8. doi: 10.3788/IRLA20190413
    [2] Cheng Hong, Liu Yong, Hu Jiajie, Zhang Xiaolong, Deng Huilong, Wei Sui.  Hybrid phase retrieval with chromatic dispersion in single-lens system . 红外与激光工程, 2020, 49(): 1-9. doi: 10.3788/IRLA20200017
    [3] Cheng Ying, Wang Zechao, Xie Xiaobing, Lu Yongbin, Chang Wenshuang.  Design and fabrication of a Fresnel lens for laser lamps . 红外与激光工程, 2020, 49(3): 0314003-0314003-7. doi: 10.3378/IRLA202049.0314003
    [4] 尹骁, 李英超, 史浩东, 江伦, 王超, 刘壮, 李冠霖.  用于物证搜寻的大视场变焦偏振成像光学系统设计 . 红外与激光工程, 2019, 48(4): 418006-0418006(8). doi: 10.3788/IRLA201948.0418006
    [5] 曲锐, 梅超, 杨洪涛, 曹剑中, 赵延.  紧凑型大变倍比红外光学系统设计 . 红外与激光工程, 2017, 46(11): 1104002-1104002(5). doi: 10.3788/IRLA201746.1104002
    [6] 白瑜, 邢廷文, 李华, 蒋亚东, 冯成.  国外高变焦比中波红外镜头的研究进展 . 红外与激光工程, 2015, 44(3): 795-802.
    [7] 赵培娥, 罗雄, 曹文勇, 赵彬, 冯立天, 李晓锋, 谭锦, 周鼎富.  应用Zoom FFT方法提高相干测风激光雷达频谱分辨率 . 红外与激光工程, 2014, 43(1): 98-102.
    [8] 白瑜, 邢廷文, 蒋亚东, 廖志远, 程习敏.  长焦距高分辨率红外两档变焦光学系统设计 . 红外与激光工程, 2014, 43(8): 2589-2594.
    [9] 徐明明, 江庆五, 刘文清, 张寅超, 陈结祥, 曾议.  一种新型双光栅光谱仪光学系统设计与优化 . 红外与激光工程, 2014, 43(1): 184-189.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  2731
  • HTML全文浏览量:  1169
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-05
  • 录用日期:  2019-12-25
  • 修回日期:  2020-01-25
  • 网络出版日期:  2020-04-29
  • 刊出日期:  2020-07-25

Design of zoom fish-eye lens systems

doi: 10.3788/IRLA20190519
    作者简介:

    侯国柱(1976-),男,工程师,博士,主要从事超大视场光学系统设计方面的研究。Email:hougz@sdju.edu.cn

    通讯作者: 吕丽军(1963-),男,教授,博士生导师,主要从事真空紫外、软X射线光学及超大视场光学系统等方面的研究。Email:lulijun@shu.edu.cn
基金项目:  National Natural Science Foundation of China (NSFC) (Grant No. 61975111)
  • 中图分类号: TN202; TH703

摘要: 变焦鱼眼镜头系统具有更大的视场角、更大的相对孔径、更大的反远比的特点。文中的设计过程中,首先,利用平面对称光学系统理论设计了固定焦距的鱼眼镜头初始结构;然后,把此鱼眼镜头的组元划分为前变焦组和后变焦组两个变焦组,并利用了高斯光学理论对整个变焦镜头进行了变焦优化;最后,得到一成像质量良好的变焦鱼眼镜头。该镜头最短焦距8 mm时的视场角为180°,最长焦距16 mm时的视场角为90°,其相对孔径为1/3.5。设计结果表明:该变焦鱼眼镜头系统的调制传递函数(MTF)数值在不同的焦距长度、空间频率为50 lp/mm时均不低于0.45,该变焦鱼眼镜头物镜比其他变焦鱼眼镜头具有更好的成像质量。

English Abstract

    • A fish-eye lens is a kind of bionic system that imitates the eyes of underwater fish looking up at the upper half of the world. By designing the function of a fish eye as an optical instrument, it becomes a fish-eye lens. The development history of fish-eye lenses can be found in Ref. [1]. Such a lens can satisfy people's purpose of obtaining information with as wide a field-of-view (FOV) as possible[1]. Usually, a lens with a FOV angle exceeding 140° is considered a fish-eye lens. Fish-eye lenses belong to the ultra-wide-angle lens family, which meets the needs of information acquisition in modern warfare, and it is an advanced technology developed by different countries. Therefore, fish-eye lenses have been widely used in national defense and military fields. Fish-eye lenses are also widely used in photography, spherical screen projection, meteorological monitoring, safety monitoring, engineering measurement, and micro-intelligent systems.

      Fish-eye lens systems are usually optical systems consisting of a front group and a rear group. The front group of lenses are usually composed of negative meniscus lenses with greater absolute focal power. The first lens, in particular, has basic characteristics of much larger negative focal power and is a reflective telephoto objective lens. The rear group has the characteristics of positive focal power. The main function of the front group of a fish-eye lens is to compress the FOV angle obviously smaller after the incident light passes through the front group, which is beneficial to the design of the rear group and the aberration correction of the entire system.

      To make an overview of the object being observed in a large area with small magnification and to make a careful observation of the object being observed in a small area with large magnification, the zoom optical system has emerged as demanded by modern observation requirements. There are two types of zoom optical systems in principle: optical compensation and mechanical compensation. The latter has become the basic type of a zoom optical system. In the zoom process of a zoom lens, by enlarging or reducing the focal length of the lens system, different parts of the object can be clearly observed. These functions are not available with a single fixed-focus lens. Therefore, in many cases, a zoom optical system can better meet the needs of various fields. Nowadays, zoom optical systems are being developing in the direction of much larger FOV angle, much larger relative aperture, higher magnification, smaller volume, and clearer imaging.

      Facing the demand of the application and development of zoom lenses, how optical designers achieve the design goal is also a difficult point in the zoom optical system design process[24]. In this paper, a zoom fish-eye lens system with large FOV and large relative aperture is designed for photographic use.

      In the next section, the details of the design of a fish-eye lens system in the visible light band with fixed focal length and a 180° FOV angle is presented[5]. The imaging quality of this zoom optical system is very good. In Section 1, we introduce zoom design principles and four rules of the zoom process in the zoom lens system. In Section 2, we detail the zoom fish-eye lens process, including design specifications for zoom fish-eye lenses and initial structural design for both fixed-focus and zoom fish-eye lenses. In Section 3, aberration analysis of the designed zoom fish-eye lens system is carried out.

      Through the division of zoom components and further optimization of the fixed focal length fish-eye lens system, a zoom fish-eye lens system with large aperture, stable image surface, and clear image is finally obtained. Its focal length can be changed continuously from 8 mm to 16 mm.