留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单向传输的光纤时延波动测量

魏恒 卢麟 蒲涛 郑吉林 赵继勇 张宝富 吴传信

魏恒, 卢麟, 蒲涛, 郑吉林, 赵继勇, 张宝富, 吴传信. 基于单向传输的光纤时延波动测量[J]. 红外与激光工程. doi: 10.3788/IRLA20200018
引用本文: 魏恒, 卢麟, 蒲涛, 郑吉林, 赵继勇, 张宝富, 吴传信. 基于单向传输的光纤时延波动测量[J]. 红外与激光工程. doi: 10.3788/IRLA20200018
Wei Heng, Lu Lin, Pu Tao, Zheng Jilin, Zhao Jiyong, Zhang Baofu, Wu Chuanxin. Fiber time delay fluctuations measurement based on one-way transfer[J]. Infrared and Laser Engineering. doi: 10.3788/IRLA20200018
Citation: Wei Heng, Lu Lin, Pu Tao, Zheng Jilin, Zhao Jiyong, Zhang Baofu, Wu Chuanxin. Fiber time delay fluctuations measurement based on one-way transfer[J]. Infrared and Laser Engineering. doi: 10.3788/IRLA20200018

基于单向传输的光纤时延波动测量

doi: 10.3788/IRLA20200018
基金项目: 国家自然科学基金面上项目(61373393;61371121)
详细信息
    作者简介:

    魏恒(1989-),男,博士生,主要从事光纤时频传递等方面的研究工作。Email:weiheng63@163.com

    蒲涛(1974-),男,教授,博士生导师,博士,主要从事光通信等方面的研究工作。Email:nj_putao@163.com

  • 中图分类号: TN929.1

Fiber time delay fluctuations measurement based on one-way transfer

  • 摘要: 为了与现有光纤通信网络兼容,研究了一种基于单纤单向传输的光纤时延波动测量方法。基于色散温变效应和Sellmeier等式,建立了利用温度的准确测量和双波长光信号传输时延差波动反推单向时延波动的比例模型。令模型中的比例系数是单波长时延波动和双波长时延差波动的比,仿真研究了温度和波长差对比例系数的影响。搭建了75 km光纤单向时延波动测量实验平台,实验结果表明:实测比例系数−258.4接近于理论比例系数−277.3,对应单向传输时延波动误差为660 ps,实验结果验证了模型的正确性和基于单向传输的光纤时延波动测量的可能性。
  • 图  1  光纤单向时延波动测量原理图

    Figure  1.  Schematic of fiber one-way time delay fluctuations measurement

    图  2  150 km光纤不同温度区间变化时对应的比例系数仿真

    Figure  2.  Simulated proportionality coefficient with different temperature ranges via 150 km fiber

    图  3  150 km光纤不同波长差对应的比例系数仿真

    Figure  3.  Simulated proportionality coefficient with different wavelengths difference via 150 km fiber

    图  4  光纤单向传输时延波动测量实验

    Figure  4.  Experiment on one-way fiber delay fluctuations measurement

    图  5  75 km光纤双波长传输时间延迟差的实测数据图

    Figure  5.  Measured data of transfer time delay difference with dual-wavelength via 75 km fiber

    图  6  75 km光纤双波长光信号传输时间延迟差的卡尔曼滤波数据图

    Figure  6.  Kalman data of transfer time delay difference with dual-wavelength via 75 km fiber

    图  7  75 km光纤单波长单向传递时间延迟数据图(a)实测数据(b)卡尔曼滤波值

    Figure  7.  One-way transfer time delay with single-wavelength via 75 km fiber (a) true value (b) Kalman value

    图  8  75 km光纤波长差为22.2 nm时对应的比例系数仿真

    Figure  8.  Simulated proportionality coefficient with wavelengths difference at 22.2 nm via 75 km fiber

  • [1] Zhao Xiaoyu, Lu Lin, Wu Chuanxin, et al. Ring fiber network based multipoint time-frequency dissemination method with high precision [J]. Acta Optica Sinica, 2019, 39(6): 0606002. (in Chinese) doi:  10.3788/AOS201939.0606002
    [2] Łukasz 'Sliwczy'nski, Przemysław Krehlik. Multipoint joint time and frequency dissemination in delay-stabilized fiber optic links [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, 2015, 62(3): 412−420. doi:  10.1109/TUFFC.2014.006773
    [3] Yu Longqiang, Wang Rong, Lu Lin, et al. Large-dynamic-range time pre-compensation scheme for fiber optic time transfer [J]. Applied Optics, 2017, 56(6): 1757−1762. doi:  10.1364/AO.56.001757
    [4] Jiang Haoqi, Zhao Dong, Chen Yongchao, et al. A noise estimation method for characterizing EDFA amplified broadband spectrum light source [J]. Infrared and Laser Engineering, 2019, 48(7): 0717006. (in Chinese)
    [5] Wu Guiling, Chen Jianping. Ultra-long haul high-precison fiber-optic two way time transfer [J]. Science & Technology Review, 2016, 34(16): 99−103. (in Chinese)
    [6] Ebenhag S C, Hedekvist P O, Johansson J. Fiber based one-way time transfer with enhanced accuracy[C]//EFTF-2010 24th European Frequency and Time Forum. IEEE, 2010: 1-6.
    [7] Ebenhag S C, Hedekvist P O, Jaldehag K. One way time transfer utilizing active detection of propagation delay variations of dual wavelengths in an optical fiber network[C]//Proceedings of the 43rd Precise Time and Time Interval Systems and Applications Meeting, 2011: 9-16.
    [8] Hanssen J L, Crane S G, Ekstrom C R. One-way temperature compensated fiber link[C]//2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings. IEEE, 2011: 1-5.
    [9] Hanssen J L, Crane S G, Ekstrom C R. One-way two-color fiber link for frequency transfer[C]//2012 IEEE International Frequency Control Symposium Proceedings. IEEE, 2012: 1-4.
    [10] Wei Heng, Lu Lin, Zhao Xiaoyu, et al. Analysis on one-way dual wavelength time transfer via fiber link based on TIVGVD[C]//14th National Conference on Laser Technology and Optoelectronics (LTO 2019). International Society for Optics and Photonics, 2019, 11170: 111703A.
    [11] Fang Wei, Ma Xiurong, Guo Honglei. Chromatic dispersion measurement of optical fibers[J]. Optical Communication Technology, 2006, 30(9): 24-26. (in Chinese).
    [12] Leviton D B, Frey B J. Temperature-dependent absolute refractive index measurements of synthetic fused silica[C]//Optomechanical Technologies for Astronomy. International Society for Optics and Photonics, 2006, 6273: 62732K.
    [13] Jin Y T, Liu J B, Zhang X T. The high precision sea-water temperature detection system design [J]. Chinese Journal of Electron Devices, 2011, 34(5): 542−545. (in Chinese)
    [14] Huang X W, Zang Y Y, Wang J Y. Study on 500kv submarine cable temperature on-line monitoring of hainan grid interconnection system [J]. Electric Wire & Cable, 2014(6): 27−30. (in Chinese)
    [15] Zhang X Q, Sun B, Jia J. Experimental investigation on temperature sensitivity enhancement of fiber Bragg grating sensor [J]. Infrared and Laser Engineering, 2019, 48(11): 1118003. (in Chinese)
  • [1] 安恒, 张晨光, 杨生胜, 薛玉雄, 王光毅, 王俊.  SiGeBiCMOS线性器件脉冲激光单粒子瞬态效应研究 . 红外与激光工程, doi: 10.3788/IRLA201948.0320001
    [2] 霍鑫, 吴瑷菁, 王孟渝, 邢宝祥.  基于位置域迭代学习的激光导引头测试系统时变周期干扰抑制 . 红外与激光工程, doi: 10.3788/IRLA201948.0913002
    [3] 张福才, 孙博君, 孙晓刚.  单目标极小值优化法的多波长真温反演研究 . 红外与激光工程, doi: 10.3788/IRLA201948.0226002
    [4] 王安祥, 张晓军, 李继军.  色散效应对钝化硅太阳电池减反射膜系设计的影响 . 红外与激光工程, doi: 10.3788/IRLA201847.0621003
    [5] 廖昱博, 龙井华, 蔡厚智, 雷云飞, 刘进元.  双磁透镜与单磁透镜分幅变像管空间分辨特性的比较 . 红外与激光工程, doi: 10.3788/IRLA201746.0520002
    [6] 张登攀, 冯盼, 王永杰.  全光纤海洋温深剖面连续测量试验研究 . 红外与激光工程, doi: 10.3788/IRLA201746.0712002
    [7] 周辉, 李松, 王良训, 涂兰芬.  单次大气散射效应对星载激光测高仪接收脉冲回波的影响 . 红外与激光工程, doi: 10.3788/IRLA201645.0106002
    [8] 范有臣, 赵洪利, 孙华燕, 郭惠超, 赵延仲.  激光主动成像结合距离选通技术的零时信号测量方法 . 红外与激光工程, doi: 10.3788/IRLA201645.0306004
    [9] 林宏奂, 郭超, 赵鹏飞, 李成钰, 李琦, 王波鹏, 黄志华, 楚秋慧, 唐选.  10 kW级单纤泵浦耦合器件设计与实验研究 . 红外与激光工程, doi: 10.3788/IRLA201645.S206003
    [10] 闫俊岑, 车英, 耿树彬.  基于新数学模型的自动对准式色散系数测量系统 . 红外与激光工程,
    [11] 高晓丹.  光纤尾纤波分复用滤光膜的研制 . 红外与激光工程,
    [12] 王佑贞, 房亮, 刘彦民, 乔旷怡, 郭鹏.  商用Flash器件在空间应用中温变规律的实验研究 . 红外与激光工程,
    [13] 李长胜, 曾张, 何小玲.  利用单块硅酸铋晶体同时测量交流电压和电流 . 红外与激光工程,
    [14] 郭良, 王泽锋, 靳爱军, 侯静, 陈金宝.  大模场面积掺镱双包层光纤的色散测量 . 红外与激光工程,
    [15] 伍剑, 袁波, 王立强.  单光栅数字莫尔位移测量法 . 红外与激光工程,
    [16] 严兵, 李建彬, 孙红胜, 张虎, 李世伟, 魏建强, 任小婉.  动态高温温场测量装置研究 . 红外与激光工程,
    [17] 杨东兴, 颜树华, 杜列波, 王国超, 林存宝, 邹鹏飞.  一种小型化纳米级单光栅位移测量系统的研制 . 红外与激光工程,
    [18] 李海星, 姚园, 史磊.  单向驱动往复式扫描反射镜模型 . 红外与激光工程,
    [19] 王辉, 林德福, 祁载康, 张頔.  时变最优的增强型比例导引及其脱靶量解析解 . 红外与激光工程,
    [20] 杨明伟, 汪磊, 杨远洪, 吴长莘.  变温环境下SLD恒流源的驱动稳定性研究 . 红外与激光工程,
  • 加载中
计量
  • 文章访问数:  47
  • HTML全文浏览量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-01
  • 修回日期:  2020-06-12

基于单向传输的光纤时延波动测量

doi: 10.3788/IRLA20200018
    作者简介:

    魏恒(1989-),男,博士生,主要从事光纤时频传递等方面的研究工作。Email:weiheng63@163.com

    蒲涛(1974-),男,教授,博士生导师,博士,主要从事光通信等方面的研究工作。Email:nj_putao@163.com

基金项目:  国家自然科学基金面上项目(61373393;61371121)
  • 中图分类号: TN929.1

摘要: 为了与现有光纤通信网络兼容,研究了一种基于单纤单向传输的光纤时延波动测量方法。基于色散温变效应和Sellmeier等式,建立了利用温度的准确测量和双波长光信号传输时延差波动反推单向时延波动的比例模型。令模型中的比例系数是单波长时延波动和双波长时延差波动的比,仿真研究了温度和波长差对比例系数的影响。搭建了75 km光纤单向时延波动测量实验平台,实验结果表明:实测比例系数−258.4接近于理论比例系数−277.3,对应单向传输时延波动误差为660 ps,实验结果验证了模型的正确性和基于单向传输的光纤时延波动测量的可能性。

English Abstract

    • 现有的高精度光纤时延波动测量方案基本都是通过测量一根光纤内往返光信号的时延差来获得单向时延波动,即属于“单纤双向”传输方式[1-3]。而现有光纤通信网络均采用“单纤单向”传输方式,并且广泛使用的光放大器如EDFA[4]等设备均为单向工作。因此,已有的时延波动测量方案难以与现有光网络业务共用同一光纤链路,必须采用专用光纤,而铺设或租用数千公里专用光纤链路的高昂成本严重阻碍了相关方案的实际应用[5]。若对现有光纤链路进行双向改造,成本会非常高昂,不仅在于重新铺设的费用高,而且改造意味着要中断现有网络通信,对网络带来的未知影响也是很难承受的。此外,海底光缆网中根本无法通过链路改造解决该问题。因此需要研究基于单向传输的光纤时延波动测量方案,使其具备兼容性和高精度特点。已有研究给出的单向时延波动补偿方案都是通过稳定单向双波长时延差波动达到链路单向时延波动的稳定控制[6-9],并没有实时延迟的测量结果。

      论文提出了一种与现有“单纤单向”光通信传输体制兼容的光纤传输时延波动测量方法,基于光纤色散温变效应[10,11]的基本原理和Sellmeier等式,建立了以双波长光信号传输时延差波动反推单向时延波动的数学模型。在给定起始温度、温变范围和波长的条件下计算理论单波长时延波动和双波长时延差波动的比例系数,通过测量双波长时延差波动高精度计算单向时延波动。对该模型进行了实验研究,实验结果验证了该模型的正确性和所提方法的可行性。

    • 由于在1 550 nm窗口,单模光纤中材料色散占主导,可以假设光纤链路传输时延波动完全受材料色散的影响。对于波长为 $\lambda $ 的光信号来说,其在单模光纤中传播一段距离 $L$ ,材料色散引起的群时延 $\tau $ 为:

      $$\tau = \frac{L}{c}\left( {n - \lambda \frac{{{\rm d}n}}{{{\rm d}\lambda }}} \right)$$ (1)

      式中: $n$ 是光纤的折射率; $c$ 是真空中的光速。

      根据公式(1),长度一定的光纤中的传输时延主要受折射率 $n$ 和波长 $\lambda $ 的影响。这意味着两个波长不同的光信号,在相同的光纤中传播速度不同。由材料色散的定义,可以得出单向传输时延关于温度的导数,即单波长单向传输时延波动为:

      $$\begin{array}{l} {\left. {\dfrac{{{\rm d}\tau }}{{{\rm d}T}}} \right|_{{\lambda _N}}} = \dfrac{1}{c}\left[ {\dfrac{{{\rm d}L}}{{{\rm d}T}}\left( {{n_{{\lambda _N}}} - {\lambda _N}\dfrac{{{\rm d}{n_{{\lambda _N}}}}}{{{\rm d}{\lambda _N}}}} \right)} \right. + \\ \quad \quad \quad \left. {\; L\left( {\dfrac{{{\rm d}{n_{{\lambda _N}}}}}{{{\rm d}T}} - {\lambda _N}\dfrac{{{{\rm d}^2}{n_{{\lambda _N}}}}}{{{\rm d}{\lambda _N}{\rm d}T}}} \right)} \right],\;\;N = 1,2 \\ \end{array} $$ (2)

      其中 $N = 1,2$ 代表该表达式代入两个不同波长对应的两个函数。可以发现,不同波长对应的单向时延波动不相同。如果公式(2)中两个函数相减结果不等于零,则可以计算光纤路径中双波长传输延迟差的波动,表达式如下所示:

      $$\begin{array}{l} {\left. {\dfrac{{{\rm d}\tau }}{{{\rm d}T}}} \right|_{{\lambda _1} - {\lambda _2}}} = \dfrac{1}{c}\left[ {\dfrac{{{\rm d}L}}{{{\rm d}T}}\left( {\left( {{n_{{\lambda _1}}} - {n_{{\lambda _2}}}} \right) + {\lambda _2}\dfrac{{{\rm d}{n_{{\lambda _2}}}}}{{{\rm d}{\lambda _2}}} - {\lambda _1}\dfrac{{{\rm d}{n_{{\lambda _1}}}}}{{{\rm d}{\lambda _1}}}} \right)} \right. + \\ \quad \quad \quad \left. { L\left( {\dfrac{{\rm d}}{{{\rm d}T}}\left( {\left( {{n_{{\lambda _1}}} - {n_{{\lambda _2}}}} \right) + {\lambda _2}\dfrac{{{\rm d}{n_{{\lambda _2}}}}}{{{\rm d}{\lambda _2}}} - {\lambda _1}\dfrac{{{\rm d}{n_{{\lambda _1}}}}}{{{\rm d}{\lambda _1}}}} \right)} \right)} \right] \\ \end{array} $$ (3)

      根据公式(3)提出了光纤单向时延波动测量方法,原理图如图1所示。本地站时钟A发送时间信号给两个激光器,分别以 ${\lambda _1}$ ${\lambda _2}$ 两个不同波长的光信号经过长距离光纤传输至终端站,经过光电探测器转换后由时间间隔测量设备测量出两个信号的到达时间差。则公式(3)中两个波长光信号之间的时延差波动可以在终端站测量得到。如果能够找到双波长时延差波动与单向传播时延波动之间的理论量化对应关系,则可以由实测的双波长传递时延差波动反推出单向时延波动。

      图  1  光纤单向时延波动测量原理图

      Figure 1.  Schematic of fiber one-way time delay fluctuations measurement

      由公式(3)可知,两种波长的折射率和光纤长度都独立地受温度的影响,在此基础上可以计算和测量传输时延差的变化。由于光纤的热胀冷缩系数约为7 ppm/ ${}^{\rm{o}}{\rm{C}}$ ,光纤长度随温度变化而导致的传输时延远小于材料色散,为方便计算,文中忽略光纤热胀冷缩对单向时延波动的影响。

      为了得到双波长时延差波动与单向传播时延波动之间的理论量化对应关系,定义比例系数 $M$ 是同一单模光纤内单波长光信号时延波动与双波长光信号时延差波动的比,忽略光纤的热胀冷缩效应,根据公式(2)和公(3)可得比例系数 $M$ 为:

      $$\begin{array}{l} M = \dfrac{{{{\left. {\dfrac{{{\rm d}\tau }}{{{\rm d}T}}} \right|}_{{\lambda _1}}}}}{{{{\left. {\dfrac{{{\rm d}\tau }}{{{\rm d}T}}} \right|}_{{\lambda _1} - {\lambda _2}}}}} = \dfrac{{\dfrac{L}{c}\left( {\dfrac{{{\rm d}{n_{{\lambda _1}}}}}{{{\rm d}T}} - {\lambda _1}\dfrac{{{{\rm d}^2}{n_{{\lambda _1}}}}}{{{\rm d}{\lambda _1}{\rm d}T}}} \right)}}{{\dfrac{L}{c}\left( {\dfrac{{{\rm d}{n_{{\lambda _1}}}}}{{{\rm d}T}} - \dfrac{{{\rm d}{n_{{\lambda _2}}}}}{{{\rm d}T}} + {\lambda _2}\dfrac{{{{\rm d}^2}{n_{{\lambda _2}}}}}{{{\rm d}{\lambda _2}{\rm d}T}} - {\lambda _1}\dfrac{{{{\rm d}^2}{n_{{\lambda _1}}}}}{{{\rm d}{\lambda _1}{\rm d}T}}} \right)}} \\ \quad \quad \quad \quad \quad = \dfrac{{\dfrac{{{\rm d}{n_{{\lambda _1}}}}}{{{\rm d}T}} - {\lambda _1}\dfrac{{{{\rm d}^2}{n_{{\lambda _1}}}}}{{{\rm d}{\lambda _1}{\rm d}T}}}}{{\dfrac{{{\rm d}{n_{{\lambda _1}}}}}{{{\rm d}T}} - \dfrac{{{\rm d}{n_{{\lambda _2}}}}}{{{\rm d}T}} + {\lambda _2}\dfrac{{{{\rm d}^2}{n_{{\lambda _2}}}}}{{{\rm d}{\lambda _2}{\rm d}T}} - {\lambda _1}\dfrac{{{{\rm d}^2}{n_{{\lambda _1}}}}}{{{\rm d}{\lambda _1}{\rm d}T}}}} \\ \end{array} $$ (4)

      由上式可知,比例系数与温变范围、光波长、光纤折射率等条件有关。Sellmeier等式是描述特定光学介质材料的折射率随温度变化和波长的经验关系式。可以通过温度及波长的相关参数来精确预测光在特定介质中的色散关系,受温度和波长影响的折射率具有以下形式[12]

      $${n^2}\left( {\lambda ,T} \right) - 1 = \sum\limits_{i = 1}^3 {\frac{{{S_i}\left( T \right){\lambda ^2}}}{{{\lambda ^2} - \lambda _i^2\left( T \right)}}} $$ (5)

      式中: ${S_i}(T)$ 是在特定温度下材料的共振强度参数,T是温度; $\lambda $ 是传播的光信号波长。在Sellmeier等式这种近似经验关系式下,共振强度参数 ${S_i}(T)$ 和波长参数不再具有直接的物理意义,而是用于生成与经验数据足够匹配的拟合参数。

      综上,光纤单向传输时延波动测量的基本原理是:通过精确测量温度和利用Sellmeier等式实时计算出给定光波长的光纤的折射率,进而计算出实际使用的双波长光信号对应的比例系数 $M$ ,从而可以将测得的双波长时延差波动乘以该比例系数 $M$ ,最后反推出单向时延波动,如公式(6)所示:

      $${\text{单波长时延波动}} = {\text{测得双波长时延差波动}}*M$$ (6)
    • 当光纤传输距离较大时,由于大量的传输介质在室外,光纤的传播特性会随环境温度的变化的而随之变化。由于光纤中光信号的色散是光纤折射率的函数,而折射率 $n(\lambda ,T)$ 是光信号波长和温度的函数,因而比例系数与三个参量有关,分别是起始温度,温变范围以及选用的光信号波长。

      图2是150 km光纤链路在不同温度区间内,波长为1 530 nm和1 560 nm光信号传输时延随光纤温度变化对应的比例系数。其中比例系数为负数代表的是单向时延波动与双波长时延差波动的趋势相反。圆标曲线代表的温度区间为 $0\;{}^{\rm{o}}{\rm{C \sim 30\;}}{}^{\rm{o}}{\rm{C}}$ ,三角标曲线代表的温度区间为 $10\;{}^{\rm{o}}{\rm{C \sim 40\;}}{}^{\rm{o}}{\rm{C}}$ 。由图中可以看出虽然两者温度变化都是30 ${}^{\rm{o}}{\rm{C}}$ ,但由于起始温度不一样,两条曲线并不相等。并且起始温度越高,温度变化相同时,比例系数的绝对值越小,则在同样的双波长时延差波动的情况下,对应计算出的单向时延波动越小。并且起始温度固定时,温变越大,比例系数的绝对值越小。由于不同温度区间内,相同波长传输下对应的比例系数不同,所以需要准确测量出温度的变化,计算相应的比例系数,从而反推单波长单向传输时延波动。

      图  2  150 km光纤不同温度区间变化时对应的比例系数仿真

      Figure 2.  Simulated proportionality coefficient with different temperature ranges via 150 km fiber

      图3为起始温度为 $0\;{}^{\rm{o}}{\rm{C}}$ ,温度变化区间为 $0\;{}^{\rm{o}}{\rm{C \sim 40\;}}{}^{\rm{o}}{\rm{C}}$ 时,150 km长的单模光纤链路中不同波长差随光纤温度变化对应的比例系数。图中各曲线由上至下对应的波长间隔依次为17 nm、22 nm和30 nm,依次分别对应于1 530 nm和1 547 nm,1 530 nm和1 552 nm,1 530 nm和1 560 nm三组不同波长差光信号随光纤温度变化对应的比例系数仿真结果。

      从图中可以看出,不同波长差对应的三条曲线随着温变的增加都是呈单调上升趋势,说明随着温变的增加,单波长时延波动与双波长时延差波动的比例系数的绝对值都是呈下降趋势。并且,在相同温度变化的条件下,随着波长差的增大,比例系数的绝对值相应减小。则较大波长差的测量误差对单波长时延差的估计精度的误差影响较小,所以在实际应用中,最好选择较大的波长差作为双波长检测信号。

      图  3  150 km光纤不同波长差对应的比例系数仿真

      Figure 3.  Simulated proportionality coefficient with different wavelengths difference via 150 km fiber

    • 光纤单向传输时延波动测量实验框图如图4所示。其中,LD是激光器;OC是光耦合器;TC是温控箱;OF是光带通滤波器;PD是光检测器;AMP是射频功率放大器;TIC是时间间隔计数器。

      图  4  光纤单向传输时延波动测量实验

      Figure 4.  Experiment on one-way fiber delay fluctuations measurement

      为便于性能评估,本地站与终端站及光纤设备都放置在同一实验室内。本地站与终端站通过75 km的G.652单模光纤连接,光纤链路由光纤盘模拟替代。光纤盘放置在可编程恒温实验箱内精确控制温度,温控精度可以达到0.1 ${}^{\rm{o}}{\rm{C}}$ 。由于该实验需要严格控制光纤的温度变化,并且要尽可能保证光纤盘内光纤温度的一致性,将温控箱设定为由10 ${}^{\rm{o}}{\rm{C}}$ 线性升高至17 ${}^{\rm{o}}{\rm{C}}$ ,时间间隔为30 min升高1摄氏度,以保证光纤盘整体的温度变化。将温控箱内初始温度恒定在10 ${}^{\rm{o}}{\rm{C}}$ 两小时,以模拟光纤埋在地底或海底温度状态。

      在本地站,时钟A(FS725 铷原子钟)提供1PPS秒脉冲时间信号和10 MHz频率标准信号。秒脉冲时间信号经过功分器分成两路,一路作为型号为KEYSIGHT 53230A时间间隔计数器(TIC2)的起始时间(start),一路通过调制激光器(LD2)将秒脉冲信号发送到终端站。激光器LD2产生的光信号波长为 ${\lambda _2} = 1\;530.{\rm{3\;nm}}$ ,对应于DWDM—C波段的C59波段。10 MHz频率标准信号除了作为时间间隔计数器的频标参考信号,还作为时间信号经过调制激光器LD1后与LD2发出的光信号通过2×1光耦合器(OC)共同进入光纤链路。激光器LD1产生的光信号波长为 ${\lambda _1} = 1\;552.5\;{\rm{nm}}$ ,对应于C31波段,与 ${\lambda _2}$ 相差22.2 nm。为了避免光功率过高导致光纤链路产生布里渊散射等非线性效应,将两个激光器的输出光功率都限定在0 dBm左右。

      在终端站,光信号经过1×2光耦合器(50:50)被均分成两路,两路信号分别经过相应的光带通滤波器(OF),再经光检测器(PD2)光电转换恢复为原信号并经功率放大器放大电功率。将 ${\lambda _2}$ 对应的恢复信号作为时间间隔计数器(TIC1)的起始时间(start),将 ${\lambda _1}$ 对应的恢复信号作为停止时间(stop),可以测得双波长光信号的时延差波动。

      另外,在终端站, ${\lambda _2}$ 对应的恢复信号经功分器又分出一路信号作为时间间隔计数器(TIC2)的停止时间(stop),以测试单波长 ${\lambda _2}$ 的单向延迟波动。TIC2使用的也是KEYSIGHT 53230A时间间隔测量仪,其测量分辨率为20 ps。

      实验的目的是验证双波长时延差波动与单波长时延波动之间的量化关系,从而验证基于单纤单向的光纤传输时延波动测量方法的可行性。实验通过TIC1来得到双波长光信号传输时延差,图5是时间间隔测量仪TIC1的实测数据,即75 km光纤双波长光信号传输时间延迟差的实测数据图。

      图  5  75 km光纤双波长传输时间延迟差的实测数据图

      Figure 5.  Measured data of transfer time delay difference with dual-wavelength via 75 km fiber

      由上图可看出在75 km单模光纤链路中,随着温度的升高,给定双波长光信号单向传播到达的时间延迟差相应减小。由于该组实验观测到的数据中包括系统中的噪声和其他干扰,无法直接计算出双波长时延差,需要通过卡尔曼滤波利用目标的动态信息进行最优估计,减少噪声的影响,也可看作是滤波过程。

      图6是75 km光纤双波长光信号传输时间延迟差的卡尔曼滤波数据图。选取图中较为平坦的一段数据(温度为11 ${}^{\rm{o}}{\rm{C}}$ 至17 ${}^{\rm{o}}{\rm{C}}$ )进行计算验证。由取得的数据可知,在实验温度为11 ${}^{\rm{o}}{\rm{C}}$ 时,75 km光纤双波长光信号传输时间延迟差为8.550 73 $ \times {10^{ - 8}}$ s。在温度上升6 ${}^{\rm{o}}{\rm{C}}$ 至17 ${}^{\rm{o}}{\rm{C}}$ 后,传输时延差降低至8.547 22 $ \times {10^{ - 8}}$ s。则可知在温变为6 ${}^{\rm{o}}{\rm{C}}$ 时,75 km光纤双波长光信号传输时间延迟差的波动为−3.51 $ \times {10^{ - 11}}$ s。

      图  6  75 km光纤双波长光信号传输时间延迟差的卡尔曼滤波数据图

      Figure 6.  Kalman data of transfer time delay difference with dual-wavelength via 75 km fiber

      图7是时间间隔测量仪TIC2数据图,即75 km光纤 ${\lambda _2} = 1\;530.{\rm{3\;nm}}$ 单波长单向传递时延数据图,其中图7(a)是实测数据,图7(b)是相应卡尔曼滤波值。为了与双波长时延差选取数据段对应,此处也选取温度区间为11 ${}^{\rm{o}}{\rm{C}}$ ~17 ${}^{\rm{o}}{\rm{C}}$ 的实验数据。由取得的观测数据可知,在实验温度为11 ${}^{\rm{o}}{\rm{C}}$ 时,75 km光纤单波长传递时间延迟为3.717 462 5 $ \times {10^{ - 4}}$ s。在温度上升6 ${}^{\rm{o}}{\rm{C}}$ 至17 ${}^{\rm{o}}{\rm{C}}$ 后,75 km光纤单波长传递时间延迟为3.717 553 2 $\times $ $ {10^{ - 4}}$ s。则由实验数据可知在温变为6 ${}^{\rm{o}}{\rm{C}}$ 时,75 km光纤链路中单波长光信号实际传输时间延迟波动为9.07 $ \times {10^{ - 9}}$ s。而测得75 km光纤双波长光信号传输时间延迟差的波动为−3.51 $ \times {10^{ - 11}}$ s,则可计算出单波长时延波动与双波长时延差波动实测比例系数为−258.4。

      图  7  75 km光纤单波长单向传递时间延迟数据图(a)实测数据(b)卡尔曼滤波值

      Figure 7.  One-way transfer time delay with single-wavelength via 75 km fiber (a) true value (b) Kalman value

      图8是75 km光纤波长差为22.2 nm(1 530.3 nm和1 552.5 nm)时不同温变对应的比例系数仿真图,温变的起始温度是11 ${}^{\rm{o}}{\rm{C}}$ 。可以看出温度升高6 ${}^{\rm{o}}{\rm{C}}$ 时,仿真比例系数为−277.3,接近于实测比例系数−258.4。

      图  8  75 km光纤波长差为22.2 nm时对应的比例系数仿真

      Figure 8.  Simulated proportionality coefficient with wavelengths difference at 22.2 nm via 75 km fiber

      由于75 km光纤双波长光信号传输时间延迟差的波动为−35.1 ps,而比例系数的仿真结果为−277.3,若进行时延补偿计算,则对应的需要补偿单向传输时延波动计算值为9.73 ns,而真实测出的单向传输时延波动为9.07 ns,误差为660 ps。验证了文中提出的测量双波长光信号传输时延差波动反推单向时延波动的数学模型的正确性。

      需要说明的是,该实验是通过温控箱来缓慢改变光纤环境温度来准确控制光纤温度变化,而在实际应用中,可以采用环境测温系统[13-15]等方法来得到温度变化的准确值以计算比例系数。

    • 文中研究了一种基于单纤单向的光纤传输时延波动的测量方法。依据色散温变效应可根据光纤温度和双波长光信号计算比例系数,再利用传输时延差波动的测量结果反推单向时延波动。仿真研究了波长差和温度等参数对比例系数的影响,结果表明:温变相同时,起始温度越高,波长差越大时,比例系数的绝对值越小。选择波长差大的双波长测量有助于抑制测量误差,可以更精确地反推出单向时延波动。进行了75 km光纤单向传输时延波动测量实验研究,分别测量双波长光信号传输时延差波动与实际单向时延波动,计算出了实际使用的双波长光信号对应的比例系数−258.4,对应的理论比例系数为−277.3。75 km光纤对应的需要补偿单向传输时延波动计算值为9.73 ns,测得单向传输时延波动真实值为9.07 ns,对应单向传输时延波动误差为660 ps,从而验证了所提方法的可行性。

WeChat 关注分享

返回顶部

目录

    /

    返回文章
    返回