留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺Tm光纤MOPA准相位匹配单程倍频的单频激光器

张鹏泉 杜铁钧 史屹君

张鹏泉, 杜铁钧, 史屹君. 掺Tm光纤MOPA准相位匹配单程倍频的单频激光器[J]. 红外与激光工程, 2020, 49(7): 20200112. doi: 10.3788/IRLA20200112
引用本文: 张鹏泉, 杜铁钧, 史屹君. 掺Tm光纤MOPA准相位匹配单程倍频的单频激光器[J]. 红外与激光工程, 2020, 49(7): 20200112. doi: 10.3788/IRLA20200112
Zhang Pengquan, Du Tiejun, Shi Yijun. Single-frequency laser based on single-pass QPM frequency doubling of Tm-doped fiber MOPA[J]. Infrared and Laser Engineering, 2020, 49(7): 20200112. doi: 10.3788/IRLA20200112
Citation: Zhang Pengquan, Du Tiejun, Shi Yijun. Single-frequency laser based on single-pass QPM frequency doubling of Tm-doped fiber MOPA[J]. Infrared and Laser Engineering, 2020, 49(7): 20200112. doi: 10.3788/IRLA20200112

掺Tm光纤MOPA准相位匹配单程倍频的单频激光器

doi: 10.3788/IRLA20200112
基金项目: 国家自然科学基金(61501153)
详细信息
    作者简介:

    张鹏泉(1976-),男,正高级工程师,硕士,主要从事微信号探测方面的研究。Email:zhpq1999@163.com

    通讯作者: 杜铁钧(1978-),男,讲师,硕士,主要从事微波器件方面的研究。Email:dutiejun@hdu.edu.cn
  • 中图分类号: TN248.1

Single-frequency laser based on single-pass QPM frequency doubling of Tm-doped fiber MOPA

  • 摘要: 为获得0.9 μm近红外波段连续波单频激光输出,用50 mm长的PPLN晶体对掺Tm光纤激光MOPA的连续波1 925.08 nm单频激光输出进行单程倍频,通过聚焦参数和准相位匹配温度优化,在43.4 W基频光功率实现了最高9.07 W的962.5 nm二次谐波输出,转换效率达到20.9%。二次谐波为单纵模运转,水平和竖直方向光束质量因子分别为1.36和1.52。实验中研究了聚焦因子和相位匹配温度对倍频转换效率的影响,并讨论了聚焦条件和准相位匹配温度带宽之间的相互关系。实验结果表明:Tm光纤激光准相位匹配单程倍频是获得0.9 μm波段连续波单频激光输出的有效方法。
  • 图  1  Tm光纤MOPA QPM单程倍频962.5 nm单频激光器实验装置示意图

    Figure  1.  Schematic of the QPM single-pass frequency-doubled Tm-fiber MOPA at 962.5 nm

    图  2  ξ=2.80时962.5 nm 倍频光输出功率和转换效率随1 925 nm 基频光功率的变化关系

    Figure  2.  962.5 nm second harmonic power and conversion efficiency as functions of 1 925nm fundamental power with ξ=2.80

    图  3  ξ=2.80时归一化倍频效率随温度变化关系的理论和实验曲线

    Figure  3.  Theoretical and experimental normalized SHG efficiency as functions of crystal temperature with ξ=2.80

    图  4  962.5 nm倍频光光束质量和单纵模测量(插图为光斑能量分布)

    Figure  4.  M2 measurement and the single-longitudinal-mode operation of the 962.5 nm second-harmonic(Inset is the beam profile)

  • [1] Heumann E, Bar S, Rademaker K, et al. Semiconductor-laser-pumped high-power upconversion laser [J]. Applied Physics Letters, 2006, 88(6): 061108−061110. doi:  10.1063/1.2172293
    [2] Yan R, Yu X, Chen D, et al. The thermal effect in diode-end-pumped continuous-wave 914-nm Nd: YVO4 laser [J]. Chinese Physics B, 2012, 21(2): 350−356.
    [3] 王垚廷, 周倩倩, 李渊骥,等. 输出770 mW的全固态连续单频蓝光激光器[J]. 中国激光, 2009, 36(7): 1714−1718. doi:  10.3788/CJL20093607.1714

    Wang Yaoting, Zhou Qianqian, Li Yuanji ,et al. All-solid-state CW Nd: YAG blue laser of single frequency operation with 770 mW output power [J]. Chinese Journal of Lasers, 2009, 36(7): 1714−1718. (in Chinese) doi:  10.3788/CJL20093607.1714
    [4] Li F, Shi Z, Li Y, et al. Tunable single-frequency intracavity frequency-doubled Ti: Sapphire laser around 461 nm [J]. Chinese Physics Letters, 2011, 28(12): 124205. doi:  10.1088/0256-307X/28/12/124205
    [5] Zhu X, Zhu G, Shi W, et al. 976 nm single-polarization single-frequency ytterbium-doped phosphate fiber amplifiers [J]. IEEE Photonics Technology Letters, 2013, 25(14): 1365−1368. doi:  10.1109/LPT.2013.2266113
    [6] Röser F, Jauregui C, Limpert J, et al. 94 W 980 nm high brightness Yb-doped fiber laser [J]. Optics Express, 2008, 16(22): 17310−17318. doi:  10.1364/OE.16.017310
    [7] Samanta G K, Fayaz G R, Ebrahimzadeh M. 1.59 W, single-frequency, continuous-wave optical parametric oscillator based on MgO: sPPLT [J]. Optics Letters, 2007, 32(17): 2623−2625. doi:  10.1364/OL.32.002623
    [8] Devi K, Kumar S C, Ebrahimzadeh M. 13.1 W, high-beam-quality, narrow-linewidth continuous-wave fiber-based source at 970 nm [J]. Optics Express, 2011, 19(12): 11631−11637. doi:  10.1364/OE.19.011631
    [9] Ganija M, Simakov N, Hemming A, et al. Second harmonic generation using a monolithic, linearly polarized thulium doped fiber laser[C]// ACOFT, 2016.
    [10] Zhang B, Jiao Z, Wang B. Efficient second-harmonic generation from polarized thulium-doped fiber laser with periodically poled MgO: LiNbO3 [J]. Optics & Laser Technology, 2015, 69: 60−64.
    [11] Creeden D, Setzler S D. 486 nm blue laser operating at 500 kHz pulse repetition frequency[C]// SPIE LASE, 2016, 11: 9728-9729.
    [12] Samanta G K, Kumar S C, Devi K, et al. Multicrystal, continuous-wave, single-pass second-harmonic generation with 56% efficiency [J]. Optics Letters, 2010, 35(20): 3513−3515. doi:  10.1364/OL.35.003513
    [13] Sané S S, Bennetts S, Debs J E, et al. 11 W narrow linewidth laser source at 780 nm for laser cooling and manipulation of Rubidium [J]. Optics Express, 2012, 20(8): 8915−8919. doi:  10.1364/OE.20.008915
    [14] 杨昌盛. 高性能大功率kHz线宽单频光纤激光器及其倍频应用研究[D]. 广州: 华南理工大学, 2015.

    Yang Changsheng. Study on high-performance high-power kHz linewidth single-frequency fiber laser and its application in frequency doubling[D]. Guangzhou:South China University of Technology, 2015. (in Chinese)
    [15] Smith A V. Software SNLO version 67[DB/OL]. http://www.as-photonics.com/products/snlo
    [16] Boyd G D, Kleinman D A. Parametric interaction of focused Gaussian light beams [J]. Journal of Applied Physics, 1968, 39(8): 3597−3639. doi:  10.1063/1.1656831
  • [1] 祖嘉琦, 武帅, 张海涛, 耿东晛, 卢姁.  光纤饱和吸收体掺镱全光纤化激光器 . 红外与激光工程, 2020, 49(6): 20190382-1-20190382-6. doi: 10.3788/IRLA20190382
    [2] 侯玉斌, 张倩, 齐恕贤, 冯宪, 王璞.  具有32 GHz频差的掺Yb3+双频DBR光纤激光器 . 红外与激光工程, 2018, 47(10): 1005005-1005005(4). doi: 10.3788/IRLA201847.1005005
    [3] 张利明, 鄢楚平, 冯进军, 张昆, 张浩彬, 朱辰, 张大勇, 赵鸿, 陈念江, 李尧, 郝金坪, 王雄飞, 何晓彤, 周寿桓.  180 W单频全光纤激光器 . 红外与激光工程, 2018, 47(11): 1105001-1105001(9). doi: 10.3788/IRLA201847.1105001
    [4] 张永昶, 朱海永, 张静, 郭俊宏, 张栋, 段延敏.  紧凑型MgO:PPLN宽波段可调谐连续光参量振荡器 . 红外与激光工程, 2018, 47(11): 1105008-1105008(5). doi: 10.3788/IRLA201847.1105008
    [5] 张伟, 吴闻迪, 余婷, 孟佳, 杨中国, 陈晓龙, 刘超铭, 叶锡生.  高功率窄谱宽1 915 nm掺铥光纤激光器研究 . 红外与激光工程, 2018, 47(5): 505001-0505001(7). doi: 10.3788/IRLA201847.0505001
    [6] 崔建丰, 高涛, 张亚男, 王迪, 姚俊, 岱钦.  高效率、高峰值功率351nm准连续紫外激光器 . 红外与激光工程, 2017, 46(6): 605004-0605004(4). doi: 10.3788/IRLA201746.0605004
    [7] 宋昭远, 姚桂彬, 张磊磊, 张雷, 龙文.  单频光纤激光器相位噪声的影响因素 . 红外与激光工程, 2017, 46(3): 305005-0305005(4). doi: 10.3788/IRLA201746.0305005
    [8] 史伟, 付士杰, 房强, 盛泉, 张海伟, 白晓磊, 史冠男, 李锦辉, 姚建铨.  基于稀土掺杂石英光纤的单频光纤激光器 . 红外与激光工程, 2016, 45(10): 1003001-1003001(8). doi: 10.3788/IRLA201645.1003001
    [9] 盛文阳, 李健军, 夏茂鹏, 庞伟伟, 高冬阳, 郑小兵.  基于参量下转换的3.39 μm中红外辐射源定标实验 . 红外与激光工程, 2016, 45(10): 1004001-1004001(7). doi: 10.3788/IRLA201645.1004001
    [10] 陈明, 赵永乐, 牛奔, 宋华.  基于铌酸锂光子线波长分裂器的研究 . 红外与激光工程, 2016, 45(6): 620003-0620003(4). doi: 10.3788/IRLA201645.0620003
    [11] 陶蒙蒙, 陶波, 余婷, 王振宝, 冯国斌, 叶锡生.  掺铥光纤激光器波长可调谐输出特性 . 红外与激光工程, 2016, 45(12): 1205002-1205002(5). doi: 10.3788/IRLA201645.1205002
    [12] 周景涛, 黄敬霞, 李莉.  1 110 nm Nd:GGG 激光器与555 nm 倍频激光器 . 红外与激光工程, 2015, 44(3): 867-871.
    [13] 李述涛, 董渊, 金光勇, 吕彦飞.  连续腔内倍频拉曼激光器的归一化理论解析 . 红外与激光工程, 2015, 44(1): 71-75.
    [14] 郭凯, 朱亚东, 周朴, 王小林, 舒柏宏.  单模掺铒光纤激光器极限输出功率的数值研究 . 红外与激光工程, 2014, 43(8): 2407-2412.
    [15] 董繁龙, 赵方舟, 葛廷武, 王智勇.  光纤弯曲对掺镱光纤激光器光束质量的影响 . 红外与激光工程, 2014, 43(11): 3565-3569.
    [16] 王立新, 蔡军, 姜培培, 沈永行.  全光纤化高功率线偏振掺镱脉冲光纤激光器 . 红外与激光工程, 2014, 43(2): 350-354.
    [17] 林桢, 任国斌, 郑斯文, 朱博枫, 彭万敬, 简水生.  基于光纤拉锥及相位调制的可切换多波长掺铒光纤激光器 . 红外与激光工程, 2014, 43(10): 3262-3268.
    [18] 李忠洋, 谭联, 袁源, 邴丕彬, 袁胜, 徐德刚, 姚建铨.  太赫兹波光学参量效应放大特性的理论研究 . 红外与激光工程, 2014, 43(8): 2650-2655.
    [19] 邹前进, 陈前荣, 王敏, 袁圣付.  连续波DF激光器光腔温度和相对粒子数范围估算 . 红外与激光工程, 2013, 42(12): 3320-3324.
    [20] 陶蒙蒙, 黄启杰, 余婷, 杨鹏翎, 陈卫标, 叶锡生.  LD泵浦不同腔结构高效运转掺铥光纤激光器 . 红外与激光工程, 2013, 42(8): 2008-2011.
  • 加载中
图(4)
计量
  • 文章访问数:  331
  • HTML全文浏览量:  235
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-05
  • 修回日期:  2020-04-20
  • 网络出版日期:  2020-06-09
  • 刊出日期:  2020-07-25

掺Tm光纤MOPA准相位匹配单程倍频的单频激光器

doi: 10.3788/IRLA20200112
    作者简介:

    张鹏泉(1976-),男,正高级工程师,硕士,主要从事微信号探测方面的研究。Email:zhpq1999@163.com

    通讯作者: 杜铁钧(1978-),男,讲师,硕士,主要从事微波器件方面的研究。Email:dutiejun@hdu.edu.cn
基金项目:  国家自然科学基金(61501153)
  • 中图分类号: TN248.1

摘要: 为获得0.9 μm近红外波段连续波单频激光输出,用50 mm长的PPLN晶体对掺Tm光纤激光MOPA的连续波1 925.08 nm单频激光输出进行单程倍频,通过聚焦参数和准相位匹配温度优化,在43.4 W基频光功率实现了最高9.07 W的962.5 nm二次谐波输出,转换效率达到20.9%。二次谐波为单纵模运转,水平和竖直方向光束质量因子分别为1.36和1.52。实验中研究了聚焦因子和相位匹配温度对倍频转换效率的影响,并讨论了聚焦条件和准相位匹配温度带宽之间的相互关系。实验结果表明:Tm光纤激光准相位匹配单程倍频是获得0.9 μm波段连续波单频激光输出的有效方法。

English Abstract

    • 900~1 000 nm波段的近红外激光在光谱、遥感等领域具有广泛而重要的应用背景,也是产生蓝-青波段激光所需的基频光,尤其光谱线宽窄、相干距离长的连续波单频激光光源对于精细光谱、原子物理等方面的应用非常关键[1]。该波段激光光源常用的实现方法包括掺Nd3+准三能级固体激光器、钛宝石激光器以及掺Yb3+光纤激光器等。受重吸收损耗所限,准三能级Nd:YAG、Nd:YVO4等激光器难以获得较高的输出功率,且严重的热效应也对单频环形腔的设计实现带来很大困难[2-3]。钛宝石激光器尽管能够实现该波段可调谐的单频激光输出,但由于偏离其发射峰中心较远因而效率较低,同时受热效应所限,其连续波单频输出功率在瓦量级附近[4]。Yb3+光纤激光器有0.9 μm单频激光输出的报道,但类似Nd3+准三能级固体激光器,其输出功率受重吸收损耗和1 μm发射峰的严重限制[5],尽管可以通过光子晶体光纤等设计在一定程度上加以克服[6],但方法较为繁复,也无法实现单频运转。另外,绿光泵浦的光学参量振荡器也是产生该波段连续波单频激光输出的常用方法之一,但输出功率受非线性晶体对泵浦光的吸收等方面因素限制,系统也相对复杂[7]

      掺Tm3+光纤激光主振放大系统(MOPA)结合准相位匹配(QPM)倍频是获得0.9 μm波段激光的另一种有效方法。光纤激光MOPA能够提供高光束质量的连续波基频光,周期极化晶体可实现对连续波基频光的高效率单程倍频,结构简单稳定。2011年,西班牙ICFO的K. Devi用周期极化铌酸锂(PPLN)晶体对40 W连续波1 940 nm光纤激光单程倍频,得到13.1 W的970 nm输出,转换效率32.7%[8];2016年,M. Ganija报道用PPLN晶体对12 W连续波Tm光纤激光倍频,得到2.3 W 975 nm输出[9];脉冲Tm光纤激光器的QPM高效倍频以及四倍频得到蓝光输出等方面研究也有相关报道[10-11]。除Tm3+光纤激光倍频得到0.9 μm输出外,对1 μm和1.5 μm光纤激光系统倍频的研究也相对较多,如G. Samanta用周期极化钽酸锂(PPLT)晶体对Yb光纤MOPA倍频得到13 W单频532 nm绿光[12]、S. San’e用PPLN晶体对1560 nm光纤MOPA倍频得到11.4 W单频780 nm红光等[13]。国内主要相关报道包括华南理工大学和中山大学分别开展对掺单频Yb光纤激光器和脉冲掺Tm光纤激光器进行QPM单程倍频研究,实现了较高的转换效率和数瓦级的倍频光输出[10, 14]。然而,在连续波单频Tm光纤激光倍频实现近红外单频激光输出方面,国内外均未见相关报道。文中,为获得0.9 μm波段的近红外单频输出,采用PPLN晶体对自行搭建的单频掺Tm光纤激光MOPA的1925 nm输出进行单程倍频,43.4 W基频光功率下962.5 nm二次谐波最高输出功率9.07 W,转换效率20.9%,并对基频光聚焦参量、相位匹配温度和允许温度之间的关系以及对转换效率的影响进行了实验研究。

    • 掺Tm光纤MOPA准相位匹配单程倍频962.5 nm单频激光器实验装置光路如图1所示。基频激光为波长1 925.08 nm的光纤激光MOPA产生,25 mW单频种子光经三级包层泵浦放大至45 W,输出尾纤为25/400 μm的保偏大模场光纤,最高输出功率时水平和竖直方向上的光束质量因子M2均小于1.1,偏振消光比大于20 dB,外差法测得光谱线宽为78 kHz。基频激光首先经焦距透镜L1聚焦并由λ/2波片将偏振方向调整为竖直方向后进入倍频晶体,实验中透镜L1分别使用了焦距30 mm和50 mm的平凸透镜以得到不同的基频光光斑半径,L1和λ/2波片均镀有1 920~1 960 nm防反膜以减小损耗(R<0.5%),实际入射倍频晶体的最高1 925 nm基频激光功率约43.4 W。

      图  1  Tm光纤MOPA QPM单程倍频962.5 nm单频激光器实验装置示意图

      Figure 1.  Schematic of the QPM single-pass frequency-doubled Tm-fiber MOPA at 962.5 nm

      实验所用倍频晶体为HC Photonics公司生产的周期极化掺氧化镁同成分铌酸锂晶体(Periodically-poled MgO-doped congruent LiNbO3,PPMg:OCLN)晶体,尺寸50 mm×12.3 mm×1 mm,包含28.4~33.6 μm、间隔0.6 μm的10个极化周期通道,每个通道宽度1 mm,相隔0.7 mm。晶体端面镀有1 925~2 300 nm和960~1 150 nm防反膜(R<0.5%),实验中选用极化周期Λ=28.4 μm对基频激光进行倍频,对应理论准相位匹配温度123 °C[15],用精度±0.1 °C的加热炉对晶体进行热管理。经过倍频晶体后产生的962.5 nm激光和1 925 nm基频光经透镜L2重新汇聚后被双色镜M1分离,分别用功率计(表头Ophir VEGA、探头FL250A-BB-35)测量功率。透镜L2焦距100 mm,镀有950~1 000 、1 920~1 960 nm增透膜,双色镜M1为平镜,镀有950~1 000 nm增透、1 920~1 960 nm高反膜。

    • 首先,使用不同焦距的聚焦透镜L1并改变透镜与光纤输出端的相对位置来调节PPLN晶体中的基频光光斑大小,研究聚焦参数对倍频转换效率的影响。根据Boyd等人提出的ξ~2.84时有最高转换效率的理论预期[16],分别选取基频光束腰半径w0为42 μm、51 μm和61 μm进行实验,对应聚焦因子ξ分别为4.05、2.83和1.93,为避免晶体损伤,未尝试更大的聚焦参数。最高基频光功率43.4 W下,最高转换效率20.9%出现在w0=50.8 μm,即ξ=2.80时,而ξ值为4.08和1.93时的转换效率较低,分别为16.0%和18.2%,与理论预期相符。图2给出聚焦因子ξ=2.80

      时962.5 nm二次谐波功率和转换效率随1925 nm基频光功率的变化曲线。图中可见二次谐波功率随基频光功率的增加而上升,且上升的斜率有增大的趋势,在入射基频光功率43.4 W时最高输出功率9.07 W;对应转换效率随基频光功率的增加而上升的趋势在基频光功率超过20 W后逐渐趋缓,而非高斯光束倍频效率公式中所预期的随基频光功率线性增加的趋势,其原因主要在于较高的转效率对基频光消耗以及二次谐波功率较高后发生的逆转换过程。

      图  2  ξ=2.80时962.5 nm 倍频光输出功率和转换效率随1 925 nm 基频光功率的变化关系

      Figure 2.  962.5 nm second harmonic power and conversion efficiency as functions of 1 925nm fundamental power with ξ=2.80

      在聚焦因子ξ=2.80、基频光功率8.2 W条件下测量PPLN晶体倍频的温度特性。晶体实际最佳工作温度为128.8 °C,与根据MgO:LN晶体的Sellmeier方程得到的~123 °C的准相位匹配温度略有出入,可能由于晶体制作过程中的误差以及基频光聚焦和晶体热效应等因素所致。图3给出归一化的二次谐波功率随晶体温度的变化关系,准相位匹配温度的3 dB带宽~4.2 °C,略宽于2.9 °C的理论值,原因主要在于理论计算中采用平面波近似,而实际高斯光束的聚焦使得部分基频光倾斜入射倍频晶体,使得等效的极化周期与正入射情况下有所不同。

      图  3  ξ=2.80时归一化倍频效率随温度变化关系的理论和实验曲线

      Figure 3.  Theoretical and experimental normalized SHG efficiency as functions of crystal temperature with ξ=2.80

      通过刀口法对经过透镜L2聚焦后的962.5 nm倍频光光束质量进行测量,最高输出功率9.07 W时水平和竖直方向上的光束质量因子M2分别为1.36和1.52,如图4(a)所示。扫描共焦干涉仪Thorlabs SA200-8B对二次谐波输出进行扫描,波形显示二次谐波为单纵模,如图4(b)所示。扫描干涉仪的分辨率不足以测量这一量级的光谱线宽,而笔者所用的外差法线宽测量系统中调制器的工作带宽没有覆盖这一波长,因而未能对线宽进行进一步精确测量。根据基频光78 kHz的光谱线宽可估算962.5 nm二次谐波线宽不超过150 kHz。

      图  4  962.5 nm倍频光光束质量和单纵模测量(插图为光斑能量分布)

      Figure 4.  M2 measurement and the single-longitudinal-mode operation of the 962.5 nm second-harmonic(Inset is the beam profile)

    • 用PPLN晶体对1925.08 nm连续波掺Tm单频光纤激光MOPA实现了高效的准相位匹配单次通过倍频,得到962.5 nm单频近红外输出。实验研究了基频光聚焦对转换效率的影响,并测量了准相位匹配的允许温度带宽。在聚焦因子ξ=2.80时,43.4 W基频光功率下倍频光最高输出功率9.07 W,转换效率20.9%,而过大或过小的聚焦均不利于实现高效倍频。962.5 nm单纵模倍频光最高功率时水平和竖直方向上的光束质量因子分别为1.36和1.52。掺Tm光纤激光MOPA准相位匹配单程倍频是获得0.9 μm波段连续波单频输出的有效技术途径,后续笔者将进一步对0.9 μm二次谐波进行倍频以获得连续波单频蓝光输出。

参考文献 (16)

目录

    /

    返回文章
    返回