留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相位敏感光时域反射系统相位模糊及解卷绕

于淼 孙铭阳 张耀鲁 何禹潼 郑志丰

于淼, 孙铭阳, 张耀鲁, 何禹潼, 郑志丰. 相位敏感光时域反射系统相位模糊及解卷绕[J]. 红外与激光工程, 2021, 50(5): 20200437. doi: 10.3788/IRLA20200437
引用本文: 于淼, 孙铭阳, 张耀鲁, 何禹潼, 郑志丰. 相位敏感光时域反射系统相位模糊及解卷绕[J]. 红外与激光工程, 2021, 50(5): 20200437. doi: 10.3788/IRLA20200437
Yu Miao, Sun Mingyang, Zhang Yaolu, He Yutong, Zheng Zhifeng. Phase ambiguity and unwrapping of phase-sensitive optical time-domain reflectometer[J]. Infrared and Laser Engineering, 2021, 50(5): 20200437. doi: 10.3788/IRLA20200437
Citation: Yu Miao, Sun Mingyang, Zhang Yaolu, He Yutong, Zheng Zhifeng. Phase ambiguity and unwrapping of phase-sensitive optical time-domain reflectometer[J]. Infrared and Laser Engineering, 2021, 50(5): 20200437. doi: 10.3788/IRLA20200437

相位敏感光时域反射系统相位模糊及解卷绕

doi: 10.3788/IRLA20200437
基金项目: 广东省普通高校青年创新人才项目(2018KQNCX332);广东省中山市社会公益科技研究项目(2018B1021);广东省引进领军人才计划(00201507)
详细信息
    作者简介:

    于淼,男,博士,主要研究方向为光电检测技术及仪器和光纤传感技术

  • 中图分类号: TP212.6

Phase ambiguity and unwrapping of phase-sensitive optical time-domain reflectometer

  • 摘要: 对相位敏感光时域反射系统相位模糊问题和解卷绕进行了研究,推导了系统中扰动引入的相位变化的整个过程,分析了相位敏感光时域反射系统相位解调过程中产生相位模糊的原因。实验采用压电陶瓷作为扰动源,通过数字相干解调方法进行了相位解调。实验结果表明,相位模糊同时存在于每条相位解调曲线上和曲线之间,因此需要进行两次相位解卷绕消除相位模糊现象;同时,对实验中产生的相位错乱进行了分析,指出相位解卷绕阈值和扰动位置相位的剧烈变化导致了扰动位置相位解卷绕结果不准确,提出了采用相位差变化峰之后的临近位置处的相位变化来还原扰动。实验表明,这种方法能够正确还原扰动信号,能够对10 Hz~1.5 kHz范围内的扰动信号进行准确解调,可同时响应并解调光纤沿线多点扰动,且相位变化幅值与扰动强度具有良好的线性关系。
  • 图  1  $\varPhi {\rm{ - OTDR}}$传感原理图

    Figure  1.  Sensing principle diagram of $\varPhi {\rm{ - OTDR}}$

    图  2  实验装置

    Figure  2.  Experiment setup

    图  3  $\sin (t)$,$\cos (t)$$\tan (t)$$( - \pi ,\pi )$周期内象限分布图

    Figure  3.  Quadrant distribution diagram of $\sin (t)$,$\cos (t)$ and $\tan (t)$ in the period of $( - \pi ,\pi )$

    图  4  (a) 200条直接相位解调结果曲线;(b)消除初相干扰的相位曲线;(c)一次解卷绕后的相位曲线;(d)相位差距离-时间曲线

    Figure  4.  (a) 200 curves of direct phase demodulation result; (b) Phase curves of eliminating initial phase interference; (c) Phase curves after first unwrapping; (d) Distance-time curves of phase difference

    图  5  (a) 二次解卷绕后的相位差距离-时间曲线;(b) 相位错乱位置二次解卷绕前后相位随时间变化曲线;(c) 相位差曲线;(d) 4 804 m处二次解卷绕前后的相位随时间变化曲线

    Figure  5.  (a) Distance-time curves of phase difference after second unwrapping; (b) Phase vs time curves of phase confusion position before and after second unwrapping; (c) Phase difference curves; (d) Phase vs time curves of before and after second unwrapping at 4 804 m

    图  6  (a)~(c) 10、800、1500 Hz扰动信号分别作用时,二次解卷绕前后的相位随时间变化曲线;(d)系统解调的频谱图

    Figure  6.  (a)-(c) When 10, 800, 1500 Hz disturbance signals act respectively, phase vs time curves of before and after second unwrapping; (d) Spectrum diagram of system demodulation

    图  7  相位变化幅值随PZT驱动电压变化曲线

    Figure  7.  Phase change amplitude vs PZT driving voltage curve

    图  8  光纤5 305 m和9 815 m处相位差值响应曲线

    Figure  8.  Phase difference response curves at 5 305 m and 9 815 m

    表  1  值域扩展具体执行对照表

    Table  1.   Specific implementation comparison table of value range expansion

    Region number in Fig.3$\sin (\phi (t))$$\cos (\phi (t))$$\phi (t) \in ( - \pi ,\pi )$
    <0<0$\arctan (Q/I) - \pi $
    <0>0$\arctan (Q/I)$
    >0>0$\arctan (Q/I)$
    >0<0$\arctan (Q/I) + \pi $
    下载: 导出CSV
  • [1] Cai Haiwen, Ye Qing, Wang Zhaoyong, et al. Distributed optical fiber acoustic sensing technology based on coherent Rayleigh scattering [J]. Laser & Optoelectronics Progress, 2020, 57(5): 050001. (in Chinese)
    [2] Liu Xu'an, Li Jun, Shi Bo, et al. Leakage bad detection technology of bad filter based on phase-sensitive optical time domain reflectometry [J]. Acta Photonica Sinica, 2019, 48(8): 0806002. (in Chinese) doi:  10.3788/gzxb20194808.0806002
    [3] Yang G, Fan X, Wang S, et al. Long-range distributed vibration sensing based on phase extraction from phase-sensitive OTDR [J]. IEEE Photonics Journal, 2016, 8(3): 6802412.
    [4] Zhou L, Wang F, Wang X, et al. Distributed strain and vibration sensing system based on phase-sensitive OTDR [J]. IEEE Photonic Technology Letters, 2015, 27(17): 1884-1887. doi:  10.1109/LPT.2015.2444419
    [5] Liang Kezhen, Pan Zhengqing, Zhou Jun, et al. Multi-parameter vibration detection system based on phase sensitive optical time domain reflectometer [J]. Chinese Journal of Lasers, 2012, 39(8): 0805004. (in Chinese) doi:  10.3788/CJL201239.0805004
    [6] Pan Z, Liang K, Ye Q, et al. Phase-sensitive OTDR system based on digital coherent detection[C]//SPIE, 2011, 8311: 83110S.
    [7] Cao Y, Yang F, Xu D, et al. Phase-sensitive optical time-Domain reflectometer based on a 120°-phase-difference Michelson interferometer [J]. Chinese Physics Letters, 2016, 33(5): 050701. doi:  10.1088/0256-307X/33/5/050701
    [8] Ma P, Sun Z, Liu K, et al. Distributed fiber optic vibration sensing with wide dynamic range, high frequency response, and multi-points accurate location [J]. Optics & Laser Technology, 2020, 124: 105966.
    [9] Shang Y, Yang Y, Wang C, et al. Optical fiber distributed acoustic sensing based on the self-interference of rayleigh backscattering [J]. Measurement, 2016, 79: 222-227. doi:  10.1016/j.measurement.2015.09.042
    [10] Fang G, Xu T, Feng S, et al. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm [J]. Journal of Lightwave Technology, 2015, 33(13): 2811-2816. doi:  10.1109/JLT.2015.2414416
    [11] Lu X, Soto M A, Thomas P J, et al. Evaluating phase errors in phase-sensitive optical time-domain reflectometry based on I/Q demodulation [J]. Journal of Lightwave Technology, 2020, 38(15): 4133-4141.
    [12] Song Muping, Zhuang Shouwang, Wang Yixuan. High-frequency vibration detection of phase-sensitive optical time-domain reflectometer [J]. Chinese Journal of Lasers, 2020, 47(5): 0506001. (in Chinese)
    [13] Wang Z, Zhang L, Wang S, et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection [J]. Optics Express, 2016, 24(2): 249713.
    [14] Jiang F, Lu Z, Cai F, et al. Low computational cost distributed acoustic sensing using analog I/Q demodulation [J]. Sensors, 2019, 19(17): 3753. doi:  10.3390/s19173753
    [15] Pang F, He M, Liu H, et al. A fading-discrimination method for distributed vibration sensor using coherent detection of φ-OTDR [J]. IEEE Photonics Technology Letters, 2016, 28(23): 2752-2755. doi:  10.1109/LPT.2016.2616023
    [16] Zhou J, Pan Z, Ye Q, et al. Characteristics and explanations of interference fading of a phi-OTDR with a multi-frequency source [J]. Journal of Lightwave Technology, 2013, 31(17): 2947-2954. doi:  10.1109/JLT.2013.2275179
    [17] Liang S, Sheng X, Lou S, et al. Combination of phase-sensitive OTDR and Michelson interferometer for nuisance alarm rate reducing and event identification [J]. IEEE Photonics Journal, 2016, 8(2): 1-12.
    [18] An Y, Feng X, Li J, et al. Two-beam phase-sensitive optical time domain reflectometer based on Jones matrix modeling [J]. Optical Engineering, 2013, 52(9): 094102. doi:  10.1117/1.OE.52.9.094102
    [19] Healey P. Fading in heterodyne OTDR [J]. Electronics Letters, 1984, 20(1): 30-32. doi:  10.1049/el:19840022
  • [1] 秦根朝, 孟凡勇, 李红, 庄炜, 董明利.  光纤光栅链路反射谱强度自适应解调 . 红外与激光工程, 2021, 50(4): 20200440-1-20200440-8. doi: 10.3788/IRLA20200440
    [2] 钟翔, 赵世松, 邓华夏, 张进, 马孟超.  基于脉冲调制的Φ-OTDR研究综述 . 红外与激光工程, 2020, 49(10): 20200166-1-20200166-10. doi: 10.3788/IRLA20200166
    [3] 祝航威, 何彦霖, 孙广开, 宋言明, 祝连庆.  螺旋型光纤传感软体操作臂状态测量及特性分析 . 红外与激光工程, 2020, 49(11): 20200276-1-20200276-9. doi: 10.3788/IRLA20200276
    [4] 郭世平, 杨宁, 张子腾, 胡苏海, 张荣之.  基于波前相位单纯形样条函数建模的空间目标波前解卷积方法 . 红外与激光工程, 2019, 48(1): 117004-0117004(5). doi: 10.3788/IRLA201948.0117004
    [5] 刘敏, 冯文林, 黄国家, 冯德玖.  二氧化钛包覆无芯光纤的硫化氢气体传感器性能研究 . 红外与激光工程, 2019, 48(8): 818003-0818003(5). doi: 10.3788/IRLA201948.0818003
    [6] 何祖源, 刘银萍, 马麟, 杨晨, 童维军.  小芯径多模光纤拉曼分布式温度传感器 . 红外与激光工程, 2019, 48(4): 422002-0422002(7). doi: 10.3788/IRLA201948.0422002
    [7] 裴丽, 王建帅, 郑晶晶, 宁提纲, 解宇恒, 何倩, 李晶.  空分复用光纤的特性及其应用研究 . 红外与激光工程, 2018, 47(10): 1002001-1002001(12). doi: 10.3788/IRLA201847.1002001
    [8] 付群健, 于淼, 常天英, 张瑾, 罗政纯, 王旭, 刘珉含, 崔洪亮.  相位敏感光时域反射系统模式识别方法综述 . 红外与激光工程, 2018, 47(7): 722001-0722001(14). doi: 10.3788/IRLA201847.0722001
    [9] 秦齐, 刘艳, 刘欢欢, 时川, 谭中伟.  图像处理在光纤光斑微位移传感中的应用 . 红外与激光工程, 2018, 47(10): 1022004-1022004(7). doi: 10.3788/IRLA201847.1022004
    [10] 李志辰, 刘琨, 江俊峰, 马鹏飞, 李鹏程, 刘铁根.  光纤周界安防系统的高准确度事件识别方法 . 红外与激光工程, 2018, 47(9): 922002-0922002(6). doi: 10.3788/IRLA201847.0922002
    [11] 尚盈, 王晨, 刘小会, 王昌, 赵文安, 彭刚定.  基于相位光时域反射的光纤分布式声波传感研究 . 红外与激光工程, 2017, 46(3): 321003-0321003(5). doi: 10.3788/IRLA201746.0321003
    [12] 赵林, 王纪强, 李振.  光纤负压波管道泄漏监测系统 . 红外与激光工程, 2017, 46(7): 722002-0722002(6). doi: 10.3788/IRLA201746.0722002
    [13] 戴士杰, 易丹, 李伟超, 常淑英, 王志平.  分段非均匀条纹生成方法及其在双频解相位中的应用 . 红外与激光工程, 2015, 44(9): 2849-2853,2857.
    [14] 钟翔, 张春熹, 李立京, 李勤.  激光器频率漂移对相位敏感光时域反射计性能影响研究 . 红外与激光工程, 2015, 44(1): 91-95.
    [15] 张春熹, 钟翔, 李立京, 李勤.  基于相位敏感光时域反射计的长距离入侵探测系统 . 红外与激光工程, 2015, 44(2): 742-746.
    [16] 李永倩, 马立.  φ-OTDR振动传感系统中的相位模糊问题 . 红外与激光工程, 2015, 44(9): 2800-2804.
    [17] 李强, 王智, 黄泽铗, 郭凯丽, 刘岚岚.  基于SCBSS信号处理技术的SMS多参量光纤传感系统 . 红外与激光工程, 2014, 43(10): 3383-3387.
    [18] 李强, 黄泽铗, 徐雅芹, 张凌云, 史骥, 王智.  基于单模-多模-单模光纤模间干涉的传感系统 . 红外与激光工程, 2014, 43(5): 1630-1636.
    [19] 程强, 薛栋林, 张学军.  相位差异的三反光学系统波前传感技术 . 红外与激光工程, 2013, 42(6): 1601-1606.
    [20] 徐鹏飞, 张建辉, 孟祥然, 马可贞, 赵宇, 张文栋, 薛晨阳, 闫树斌.  光纤腔动态谐振响应特性 . 红外与激光工程, 2013, 42(3): 599-604.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  17
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-01
  • 修回日期:  2021-02-11
  • 刊出日期:  2021-05-21

相位敏感光时域反射系统相位模糊及解卷绕

doi: 10.3788/IRLA20200437
    作者简介:

    于淼,男,博士,主要研究方向为光电检测技术及仪器和光纤传感技术

基金项目:  广东省普通高校青年创新人才项目(2018KQNCX332);广东省中山市社会公益科技研究项目(2018B1021);广东省引进领军人才计划(00201507)
  • 中图分类号: TP212.6

摘要: 对相位敏感光时域反射系统相位模糊问题和解卷绕进行了研究,推导了系统中扰动引入的相位变化的整个过程,分析了相位敏感光时域反射系统相位解调过程中产生相位模糊的原因。实验采用压电陶瓷作为扰动源,通过数字相干解调方法进行了相位解调。实验结果表明,相位模糊同时存在于每条相位解调曲线上和曲线之间,因此需要进行两次相位解卷绕消除相位模糊现象;同时,对实验中产生的相位错乱进行了分析,指出相位解卷绕阈值和扰动位置相位的剧烈变化导致了扰动位置相位解卷绕结果不准确,提出了采用相位差变化峰之后的临近位置处的相位变化来还原扰动。实验表明,这种方法能够正确还原扰动信号,能够对10 Hz~1.5 kHz范围内的扰动信号进行准确解调,可同时响应并解调光纤沿线多点扰动,且相位变化幅值与扰动强度具有良好的线性关系。

English Abstract

    • 相位敏感光时域反射(Phase Sensitive Optical Time Domain Reflectometer, $\varPhi {\rm{ - OTDR}}$)作为一种全分布式光纤传感技术,具有灵敏度高、动态范围广、结构简单等优点,在周界安防、管道安全监测和结构健康监测等领域有极大的应用前景[1-2]$\varPhi {\rm{ - OTDR}}$系统通过解调后向瑞利散射光的相位和强度信息,可实现传感光纤沿线的振动、应变等物理量的分布式测量[3-4]

      目前报导的$\varPhi {\rm{ - OTDR}}$系统相位解调方法主要有数字相干解调方法[5-6]、基于$3 \times 3$耦合器的解调方法[7-8]、相位生成载波(Phase Generation Carrier, PGC)解调方法[9-10]以及In-phase/Quadrature(I/Q)解调方法[11-14]。数字相干解调方法直接采集$\varPhi {\rm{ - OTDR}}$的后向瑞利散射光与本地光的拍频信号,再经正交解调算法实现解调,系统结构简单、硬件要求低,但需要高速数据采集卡(Data Acquisition, DAQ)以及快速的数据处理能力;基于$3 \times 3$耦合器的解调方法利用$3 \times 3$耦合器构成迈克尔逊干涉结构(Michelson Interferometer, MI),对$\varPhi {\rm{ - OTDR}}$的后向瑞利散射光信号及其经MI后的两路干涉信号进行采集,信号处理后实现解调;PGC解调方法同样采用MI结构,并对$\varPhi {\rm{ - OTDR}}$的RSL进行相位调制,通过交叉相乘或反正切算法得到相位,由于这两种方法都引入干涉结构,存在参考臂,解调结果易受环境因素影响;I/Q解调方法引进$90^{\circ} $光混合器(hybrid)得到正交的后向瑞利散射光,并使本地光分别与正交的后向瑞利散射光拍频输出I、Q两路光,采集I、Q两路光信号后进行反正切便可解调出相位。虽然上述$\varPhi {\rm{ - OTDR}}$系统相位解调方法的解调结构与数据处理有所差异,但都是通过对后向瑞利散射光的不同处理以实现相位的解调,一旦后向瑞利散射光发生相位模糊,将导致相位解调不准确。为降低相位模糊对解调结果的影响,国内外研究人员先后提出了诸如多频率综合鉴别、扫频脉冲调制和结合干涉仪等方法[15-19],提高了相位解调准确度,但增加了系统结构成本和与之对应的解调过程和结构设计的复杂度。

      文中通过理论推导讨论了相位模糊产生的原因及其对解调结果的影响,实验采用数字相干解调方法,分析解调过程中出现的相位模糊现象,并利用二次相位解卷绕得到解调结果。同时分析了扰动位置相位解调结果出现错乱的原因,提出可避免相位错乱的还原扰动信号方法,并实验验证了其有效性。

    • $\varPhi {\rm{ - OTDR}}$传感原理如图1所示,将窄线宽激光脉冲注入到传感光纤中,并对返回的后向瑞利散射光进行解调,得到后向瑞利散射光相位和幅值的变化,进而得到外界物理量的变化。传感光纤返回的后向瑞利散射光可由一维脉冲响应模型描述,表示为[4]

      图  1  $\varPhi {\rm{ - OTDR}}$传感原理图

      Figure 1.  Sensing principle diagram of $\varPhi {\rm{ - OTDR}}$

      $${E_{{{\rm{R}}}}}\left( t \right) = \sum\limits_{i = 1}^N {r\left( {{\tau _i}} \right)\exp \left( { - \alpha \frac{{c{\tau _i}}}{{{{{n}}_{\rm{f}}}}}} \right)} {\rm{rect}}\left( {\frac{{t - {\tau _i}}}{w}} \right)\cos \left( {\omega \left( {t - {\tau _i}} \right)} \right)$$ (1)

      式中:$N$为传感光纤中瑞利散射中心的个数;${\tau _i}$为第$i$个瑞利散射中心对应的时间延迟,可由${\tau _i} = {{2{n_{\rm{f}}}{{\textit{z}}_i}} / c}$得到,${n_{\rm{f}}}$为光纤折射率,${{\textit{z}}_i}$为第$i$个瑞利散射中心距光纤传感光纤输入端的距离,$c$为光在真空中的传播速度;$r\left( {{\tau _i}} \right)$为第$i$个瑞利散射中心的振幅;$\omega $为脉冲光角频率;$\alpha $为光纤衰减系数,$w$为脉冲宽度,当$0 \leqslant $$ \left( {{{t - {\tau _i}} / w}} \right) \leqslant 1$${\rm{rect}}\left( {{{t - {\tau _i}} / w}} \right) = 1$,否则为0。由公式(1)可知,某一时刻得到的瑞利散射光是由脉冲内所有瑞利散射中心的散射光的干涉结果。由窄带高斯随机过程可将公式(1)表示为[19]

      $${E_{{{\rm{R}}}}}\left( t \right) = X\left( t \right)\cos \left( {\omega t} \right) + Y\left( t \right)\sin \left( {\omega t} \right)$$ (2)

      其中,$X\left( t \right)$$Y\left( t \right)$分别表示为:

      $$X\left( t \right) = \sum\limits_{i = 1}^N {r\left( {{\tau _i}} \right)} \exp \left( { - \alpha \frac{{c{\tau _i}}}{{{n_{\rm{f}}}}}} \right){\rm{rect}}\left( {\frac{{t - {\tau _i}}}{w}} \right)\cos \left( {\omega {\tau _i}} \right)$$ (3)
      $$Y\left( t \right) = \sum\limits_{i = 1}^N {r\left( {{\tau _i}} \right)} \exp \left( { - \alpha \frac{{c{\tau _i}}}{{{n_{\rm{f}}}}}} \right){\rm{rect}}\left( {\frac{{t - {\tau _i}}}{w}} \right)\sin \left( {\omega {\tau _i}} \right)$$ (4)

      将公式(2)进一步化简为:

      $${E_{\rm{R}}}\left( t \right) = {E_s}\left( t \right)\cos \left( {\omega t + \varphi \left( t \right)} \right)$$ (5)

      式中,${E_s}\left( t \right)$$\varphi \left( t \right)$分别为:

      $${E_s}\left( t \right) = \sqrt {{X^2}\left( t \right) + {Y^2}\left( t \right)} $$ (6)
      $$\varphi \left( t \right) = - \arctan \left( {{{Y\left( t \right)} / {X\left( t \right)}}} \right)$$ (7)

      假设图1中传感光纤某一位置发生扰动,扰动引入了大小为${\varphi _v}$相位变化,脉冲光经过振动位置后的某一时刻${t_0}$,返回的后向瑞利散射光相位$\varphi '({t_0})$可由公式(8)得到:

      $$ \begin{split} \varphi '\left( {{t_0}} \right) = & \arctan \left( {\dfrac{{Y\left( {{t_0}} \right)}}{{X\left( {{t_0}} \right)}}} \right) = \arctan \left( {\dfrac{{ \displaystyle\sum\limits_{i = 1}^N {r\left( {{\tau _i}} \right)\exp \left( { - \alpha \dfrac{{c{\tau _i}}}{{{n_{\rm{f}}}}}} \right){\rm{rect}}\left( {\dfrac{{{t_0} - {\tau _i}}}{w}} \right)\sin \left( {\omega {\tau _i} + {\varphi _v}} \right)} }}{{ \displaystyle\sum\limits_{i = 1}^N {r\left( {{\tau _i}} \right)\exp \left( { - \alpha \dfrac{{c{\tau _i}}}{{{n_{\rm{f}}}}}} \right){\rm{rect}}\left( {\dfrac{{{t_0} - {\tau _i}}}{w}} \right)\cos \left( {\omega {\tau _i} + {\varphi _v}} \right)} }}} \right) = \\ &\arctan \left( {\dfrac{{ \displaystyle\sum\limits_{i = 1}^N {r\left( {{\tau _i}} \right)\exp \left( { - \alpha \dfrac{{c{\tau _i}}}{{{n_{\rm{f}}}}}} \right){\rm{rect}}\left( {\dfrac{{{t_0} - {\tau _i}}}{w}} \right)\left( {\sin \omega {\tau _i}\cos {\varphi _v} + \cos \omega {\tau _i}\sin \varphi } \right)} }}{{ \displaystyle\sum\limits_{i = 1}^N {r\left( {{\tau _i}} \right)\exp \left( { - \alpha \dfrac{{c{\tau _i}}}{{{n_{\rm{f}}}}}} \right){\rm{rect}}\left( {\dfrac{{{t_0} - {\tau _i}}}{w}} \right)\left( {\cos \omega {\tau _i}\cos {\varphi _v} - \sin \omega {\tau _i}\sin \varphi } \right)} }}} \right) = \\ &\arctan \left( {\dfrac{{\sin \left( {\varphi \left( {{t_0}} \right) + {\varphi _v}} \right)}}{{\cos \left( {\varphi \left( {{t_0}} \right) + {\varphi _v}} \right)}}} \right) = \varphi \left( {{t_0}} \right) + {\varphi _v} \\ \end{split}$$ (8)

      由公式(8)的结果可以看出,振动引入的相位变化调制到了振动位置后的后向瑞利散射光中,所以${t_0}$时刻返回的后向瑞利散射光表示为:

      $${E_{\rm{R}}}\left( {{t_0}} \right) = {E_s}\left( {{t_0}} \right)\cos \left( {\omega {t_0} + \varphi \left( {{t_0}} \right) + {\varphi _v}} \right)$$ (9)

      由于${\varphi _v}$大小与振动幅度成正比,所以通过对公式(9)中的相位进行解调,便可得知振动信号的变化情况。但随着振动幅度增加,${\varphi _v}$的变化范围会超出$2\pi $范围,可表示为${\varphi _v}' + 2k\pi $${\varphi _v}'$$\left( { - \pi ,\pi } \right)$范围内,$k$为整数,则后向瑞利散射光变为:

      $$ \begin{split} {E_{\rm{R}}}\left( {{t_0}} \right) =& {E_s}\left( {{t_0}} \right)\cos \left( {\omega {t_0} + \phi \left( {{t_0}} \right) + {\phi _v}' + 2k\pi } \right) =\\ & {E_s}\left( {{t_0}} \right)\cos \left( {\omega {t_0} + \phi \left( {{t_0}} \right) + {\phi _v}'} \right) \end{split} $$ (10)

      由公式(10)可知,随着${\varphi _v}$的增加,${E_{\rm{R}}}\left( {{t_0}} \right)$将随之呈周期性变化,则由${E_{\rm{R}}}\left( {{t_0}} \right)$解调出的相位也将在$\left( { - \pi ,\pi } \right)$范围内周期变化,即发生了相位模糊现象,导致解调的相位结果不能正确反映振动幅度和频率。

    • 实验装置如图2所示,采用窄线宽外腔半导体激光器(External Cavity Laser, ECL)作为光源,出射光通过10:90的光纤耦合器被分为本地光和探测光两部分。探测光经声光调制器(Acoustic Optical Modulator, AOM)调制成脉冲光,设置脉宽为100 ns、重复频率为10 kHz,AOM对探测光的移频量$\Delta f$为80 MHz。脉冲光经掺铒光纤放大器(Erbium Doped Fiber Amplifier, EDFA)放大,经环形器进入到长度为5 km的传感光纤中,传感光纤返回的瑞利散射光表示为${E_{\rm{R}}}\left( t \right)\cos \left( {2\pi \left( {{f_{\rm{c}}} + \Delta f} \right) + \varphi \left( t \right)} \right)$,其中${E_{{{\rm{R}}}}}(t)$为散射光振幅,${f_{\rm{c}}}$为ECL的中心频率,$\varphi \left( t \right)$为散射光的相位。瑞利散射光与本地光${E_{\rm{L}}}\left( t \right)\cos \left( {2\pi {f_{\rm{c}}}t} \right)$在3 dB耦合器中产生拍频信号,${E_{\rm{L}}}\left( t \right)$为本地光的振幅,${\varphi _0}\left( t \right)$为本地光相位。拍频信号由平衡探测器(Balanced Photo-detector, BPD)转化成交流电信号,输出功率为[7]

      图  2  实验装置

      Figure 2.  Experiment setup

      $${P_{{\rm{BPD}}}} \propto 2{E_{\rm{R}}}\left( t \right){E_{\rm{L}}}\left( t \right)\cos \left( {2\pi \Delta ft + \varphi \left( t \right)} \right)$$ (11)

      交流电信号由400 MHz采样率的DAQ进行采集,并将数据传输到计算机(Personal Computer, PC)进行解调。通过数字正交解调算法,可以解调出$\varphi \left( t \right)$[5-6],即

      $$\varphi \left( t \right) = \arctan \left( {{Q / I}} \right)$$ (12)

      其中,$I$$Q$分别为:

      $$I = {E_{\rm{R}}}\left( t \right){E_{\rm{L}}}\left( t \right)\cos \varphi \left( t \right)$$ (13)
      $$Q = {E_{\rm{R}}}\left( t \right){E_{\rm{L}}}\left( t \right)\sin \varphi \left( t \right)$$ (14)

      $I$$Q$是由${P_{{\rm{BPD}}}}$分别乘以频率为$f$的正余弦信号,再进行低通滤波之后的结果。由于反正切函数的值域为$\left( { - {\pi / {2,{\pi / 2}}}} \right)$,要根据$I$$Q$所在象限将公式(12)结果转化到$\left( { - \pi ,\pi } \right)$范围内,再经过相位解卷绕才能得到最终的相位结果,具体解卷绕方法见2.2节。

    • 经公式(12)反正切运算求得周期为$\pi $的数值序列函数,其取值范围为$( - \pi /2,\pi /2)$,可根据公式(13)和公式(14)中$\cos (\phi (t))$$\sin (\phi (t))$的符号,可将$\phi (t)$值扩展到$( - \pi , \pi )$图3$\sin (t)$$\cos (t)$$\tan (t)$$( - \pi , \pi )$周期内的象限分布,值域扩展的具体执行过程可参照考表1

      由于$( - \pi ,\pi )$的相位分布仍不满足相位解调的要求,当相邻两点间的相位之差的绝对值大于$\pi $时,后一点的相位发生跳跃,需要对上述结果继续进行相位解卷绕(Phase-unwrapping)处理,将单次采集的一组数据中相邻两点的相位做差值处理${\phi _i}(t) - {\phi _{i - 1}}(t)$,根据差值的范围,按照公式(15)对后一点相位${\phi _i}(t)$进行处理,得到新的沿光纤分布的相位曲线为:

      $${\phi _i}(t) = {\phi _i}(t) + 2\pi *Coeffcient$$ (15)

      设定相位解卷绕的起始点需增加$2\pi $的系数$Coeffcient = 0$,随着采样点向后的推移,可按照公式(16),确定相应点的调节系数:

      $$Coeffcient = \left\{ \begin{array}{l} Coeffcient + 1,{\rm{ }}{\phi _i}(t) - {\phi _{i - 1}}(t) < - \pi \\ Coeffcient - 1,{\rm{ }}{\phi _i}(t) - {\phi _{i - 1}}(t) > \pi \end{array} \right.$$ (16)

      经多次采集,将由公式(15)和公式(16)进行空间域方向(单次采集、光纤方向)的相位解卷绕所确定的扰动点位置所对应的相位差随时间的变化信息,通过下述实验结果分析,时间域方向(多次采集、时间方向)的相位差值,同样存在相位卷绕问题,需要重复公式(15)和公式(16),进行再次解卷绕,最终得到扰动点随时间变化的相位曲线,时间间隔对应于脉冲重复频率的倒数,对该扰动点位置的相位变化曲线进行短时傅里叶变换,即可获取扰动信号的频率信息。

      图  3  $\sin (t)$,$\cos (t)$$\tan (t)$$( - \pi ,\pi )$周期内象限分布图

      Figure 3.  Quadrant distribution diagram of $\sin (t)$,$\cos (t)$ and $\tan (t)$ in the period of $( - \pi ,\pi )$

      表 1  值域扩展具体执行对照表

      Table 1.  Specific implementation comparison table of value range expansion

      Region number in Fig.3$\sin (\phi (t))$$\cos (\phi (t))$$\phi (t) \in ( - \pi ,\pi )$
      <0<0$\arctan (Q/I) - \pi $
      <0>0$\arctan (Q/I)$
      >0>0$\arctan (Q/I)$
      >0<0$\arctan (Q/I) + \pi $
    • 实验中采用信号发生器驱动的压电陶瓷(Piezoelectric Ceramics, PZT)作为扰动源,其驱动为200 Hz的正弦电压,加载于传感光纤4 800 m处,4 750~4 850 m的相位解调结果如图3所示。图4(a)为未经处理的200条直接相位解调结果曲线,即将公式(12)值域扩展到$\left( { - \pi ,\pi } \right)$后的结果,图中200条曲线的初始相位随机分布于$\left( { - \pi ,\pi } \right)$之间,且每条曲线都存在许多$ - \pi $$\pi $之间的跳变。这是由于系统中激光器和声光调制器的相位噪声会引起注入传感光纤的光脉冲具有随机的初始相位,从而影响后向瑞利散射光相位,造成图4(a)中每条相位曲线初相不同的现象,将每条曲线减去其初相得到图4(b),消除了相位噪声对相位解调的影响,但仍存在$ - \pi $$\pi $之间的相位跳变,这种跳变是由相位模糊现象引起的,解调出的瑞利散射光相位超出了$\left( { - \pi ,\pi } \right)$范围,所以相邻两个采样点之间的相位产生$ \pm 2\pi $跳变,分别对200条相位曲线进行解卷绕,结果如图4(c)所示。可看到相位跳变得以消除,相位曲线从扰动位置处开始发生变化,解调出了扰动引起的相位变化,以4 795 m为参考点计算其后10 m距离相对参考点的相位差,得到图4(d)相位差随距离和时间的变化曲线,看到相位差沿时间轴的变化仍存在相位模糊,说明一次解卷绕只解决了每条相位曲线上的相位模糊,而相位模糊不仅存在于每条相位曲线上(空间方向),也同样存在于相位曲线间(时间方向)。

      图  4  (a) 200条直接相位解调结果曲线;(b)消除初相干扰的相位曲线;(c)一次解卷绕后的相位曲线;(d)相位差距离-时间曲线

      Figure 4.  (a) 200 curves of direct phase demodulation result; (b) Phase curves of eliminating initial phase interference; (c) Phase curves after first unwrapping; (d) Distance-time curves of phase difference

      为解决相位曲线间存在的相位模糊现象,沿时间轴进行二次解卷绕,结果如图5所示,图中4 800 m后的相位呈200 Hz的正弦变化,与PZT引入的扰动信号相符,相位模糊现象彻底消失。但是,在扰动位置4 800 m附近的相位却发生了错乱,相位解调结果出现了较大误差。图5(b)为相位发生错乱位置的二次相位解卷绕前后的相位随时间变化曲线,从图中可以看出,在红色标识处的相位解卷绕起到作用,而黑色标识处的相位没有实现解卷绕,正是因为这种解卷绕不完全而导致了相位错乱的产生。解卷绕不完全的直接原因在于,相位解卷绕算法是通过对相邻点的相位差与阈值(通常为$\pi $)比较,相位差大于阈值时才进行解卷绕,图5(b)中没有实现解卷绕的位置,便是相位差没有达到解卷绕阈值。虽然通过降低阈值,可将相邻点相位差达到解卷绕阈值,但是这也降低了解调结果相邻点相位变化极限,一旦实际的相位变化超出相邻点相位变化极限,解卷绕后便会产生错误的解卷绕结果。

      图  5  (a) 二次解卷绕后的相位差距离-时间曲线;(b) 相位错乱位置二次解卷绕前后相位随时间变化曲线;(c) 相位差曲线;(d) 4 804 m处二次解卷绕前后的相位随时间变化曲线

      Figure 5.  (a) Distance-time curves of phase difference after second unwrapping; (b) Phase vs time curves of phase confusion position before and after second unwrapping; (c) Phase difference curves; (d) Phase vs time curves of before and after second unwrapping at 4 804 m

      图4(c)可以看出相位解调结果在扰动位置并不是突变的,而是一个缓变过程,计算图4(c)中每条相位曲线相邻点的相位差,得到如图5(c)的相位差随距离变化曲线。图5(c)中200条相位差曲线在4 797~4 803 m的范围内出现了明显的相位差变化峰,此相位差变化峰确定了扰动发生的位置及其对相位的作用范围,在此范围内相位变化剧烈,容易产生相位错乱的现象,而且在此范围内的相位处于变化过程中,因此范围内任何位置的相位随时间变化的幅值都不能正确反映扰动的强度大小,所以常用的采用相位差变化峰位置的相位变化还原扰动信号的方法是不够准确的,而且容易出现相位错乱现象。

      由公式(10)和公式(11)可知,扰动引起的相位变化不仅调制到了扰动位置的后向瑞利散射光,而且调制到了扰动位置后的后向瑞利散射光中,所以扰动引起的相位变化完全可以从扰动发生之后的位置得到,从而避免以上问题,因此采用相位差变化峰峰值位置后邻近位置的相位来还原扰动信号。如图5(d)所示为4 804 m处二次解卷绕前后的相位随时间变化曲线,可以看出二次解卷绕结果是呈200 Hz的正弦变化的,与扰动一致。

      为进一步验证上述方法在宽频范围内的相位解调与解卷绕的有效性,将信号发生器产生的PZT驱动信号频率分别设置为10、800、1 500 Hz三个低、中、高频率,模拟扰动,采集数据并进行相位解调与解卷绕,分别得到如图6(a)~(c)所示的二次解卷绕前后的相位随时间变化的对比曲线,以及经短时傅里叶变换后的频谱分析曲线,其中解调结果与所施加信号的条件完全一致。

      图  6  (a)~(c) 10、800、1500 Hz扰动信号分别作用时,二次解卷绕前后的相位随时间变化曲线;(d)系统解调的频谱图

      Figure 6.  (a)-(c) When 10, 800, 1500 Hz disturbance signals act respectively, phase vs time curves of before and after second unwrapping; (d) Spectrum diagram of system demodulation

      为进一步验证相位解调与解卷绕方法处理后,相位变化幅值与扰动幅度的关系,改变PZT的驱动电压以步进值从0.5 V递增到5 V,使扰动强度相应地线性增加,采用上述方法得到不同扰动幅度下的相位正弦变化曲线,其幅值及线性拟合曲线如图7所示。从图中看出幅值随PZT驱动电压基本呈线性变化,线性拟合曲线的拟合系数为0.992 1。

      图  7  相位变化幅值随PZT驱动电压变化曲线

      Figure 7.  Phase change amplitude vs PZT driving voltage curve

      由公式(9)可知,同一时刻,沿单根光纤的第一个振动点引入的相位变化调制到了振动位置后的后向瑞利散射光中,即振动位置后光纤中每一点的光相位变化量与振动点引入的相位变化一致,通过二次相位解卷绕方法中同一时刻相邻两点相位差值处理,如图5(c)所示,仍能保证振动位置后相对相位差值为0,从而不影响光纤中光信号对后续振动点的相位响应,从而实现光纤沿线多点振动相位解调。如图8所示,为$\varPhi {\rm{ - OTDR}}$在5 305 m和9 815 m处对于两个同时扰动的相位差值响应曲线(期间的小峰值为两盘光纤连接处法兰盘反射事件)。但在二次相位解卷绕方法实现的过程中,虽有减初相的处理,仍应保证光纤起始位置的光纤不受外界干扰,以获得较为稳定的初始相位基准点。

      图  8  光纤5 305 m和9 815 m处相位差值响应曲线

      Figure 8.  Phase difference response curves at 5 305 m and 9 815 m

    • 文中通过一维脉冲模型对$\varPhi {\rm{ - OTDR}}$传感原理进行了分析,推导了扰动造成的相位变化调制到后向瑞利散射光的过程,理论证明了扰动造成的相位变化将调制到扰动位置之后的后向瑞利散射光中,同时说明了当扰动造成相位变化幅度超出$2\pi $时便会产生相位模糊现象,并通过实验进行了验证。为了消除相位模糊现象,文中采用两次相位解卷绕,分别消除了每条相位解调曲线上的相位模糊和曲线间的相位模糊。针对在扰动位置附近产生的解调相位错乱进行了分析,提出了采用相位差变化峰之后邻近位置的相位解调结果来还原扰动,有效地避免了相位错乱现象,验证了该方法能够准确解调10 Hz~1.5 kHz范围内的扰动信号的相位变化和频率信息,可同时响应并解调光纤沿线多点扰动,保证了相位解调结果的幅值与扰动强度的正比关系。由于相位模糊现象普遍存在于各种$\varPhi {\rm{ - OTDR}}$相位解调方法中,所以文中研究对相位解调的准确性提升具有参考和实用价值。

参考文献 (19)

目录

    /

    返回文章
    返回