留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水基泡沫消光特性实验研究(特约)

潘功配 杜雪峰 赵军

潘功配, 杜雪峰, 赵军. 水基泡沫消光特性实验研究(特约)[J]. 红外与激光工程, 2020, 49(7): 20201023. doi: 10.3788/IRLA20201023
引用本文: 潘功配, 杜雪峰, 赵军. 水基泡沫消光特性实验研究(特约)[J]. 红外与激光工程, 2020, 49(7): 20201023. doi: 10.3788/IRLA20201023
Pan Gongpei, Du Xuefeng, Zhao Jun. Experimental study on extinction characteristics of aqueous foam(Invited)[J]. Infrared and Laser Engineering, 2020, 49(7): 20201023. doi: 10.3788/IRLA20201023
Citation: Pan Gongpei, Du Xuefeng, Zhao Jun. Experimental study on extinction characteristics of aqueous foam(Invited)[J]. Infrared and Laser Engineering, 2020, 49(7): 20201023. doi: 10.3788/IRLA20201023

水基泡沫消光特性实验研究(特约)

doi: 10.3788/IRLA20201023
详细信息
    作者简介:

    潘功配(1945-),男,教授,博士生导师,主要从事军事化学与光电对抗干扰等方面的研究工作。Email:pangongp@163.com

  • 中图分类号: TN976

Experimental study on extinction characteristics of aqueous foam(Invited)

  • 摘要: 水基泡沫在光电对抗隐身等领域有着广泛的应用,但现有光电干扰隐身技术存在作用时间短、干扰波段单一、污染环境等问题,难以有效对抗双模、多模精确制导武器。针对上述问题研究水基泡沫配方,开展了新型水基泡沫对可见光、红外(3~5 μm、8~14 μm)、激光(1.06 μm, 10.6 μm)、毫米波(3 mm, 8 mm)和厘米波(2 cm, 3 cm)的消光性能实验以及水基泡沫对8~14 μm波段热像遮蔽干扰效应测试,讨论了水基泡沫消光机理,指出以水基泡沫形成泡沫云或使之与人工雾复合构成幕障,有望获取一种“宽频谱”、“全波段”、“环保型”的新型烟幕武器装备。
  • 图  1  独立气泡

    Figure  1.  Independent air bubble

    图  2  离散泡沫群

    Figure  2.  Discrete foam group

    图  3  粘连泡沫聚集体

    Figure  3.  Conglutinated foam aggregate

    图  4  泡沫云

    Figure  4.  Foams cloud

    图  5  测试用水基泡沫与取样用泡沫筒

    Figure  5.  Aqueous foam for measurement and foam cylinder for sampling

    图  6  测试原理图

    Figure  6.  Principle of measurement

    图  7  OPAG33测试系统示意图

    Figure  7.  Schematic of OPAG33 testing

    图  8  泡沫云红外消光测试场景图

    Figure  8.  Scene of infrared extinction test of foams cloud

    图  9  不同波长下,泡沫红外透过率随时间变化光谱图

    Figure  9.  Relation between infrared transmittance and time at different wavelengths

    图  10  泡沫红外消光系数与波长的关系图

    Figure  10.  Foam infrared extinction coefficient vs wavelength diagram

    图  11  泡沫对SAT-HY6800型非制冷红外焦平面热像遮蔽干扰效果

    Figure  11.  Masking effect with SAT-HY6800 focal plane thermal image

    图  12  对激光(1.06 μm、10.6 μm)消光性能实验测试系统

    Figure  12.  Extinction performance test system for laser(1.06, 10.6 μm)

    图  13  泡径分布为4~7 mm的不同厚度泡沫对1.06 μm激光衰减曲线

    Figure  13.  Attenuation curves of different thickness foam with different bubble size distributions of 4−7 mm to 1.06 μm laser

    图  14  泡径分布为4~7 mm的不同厚度泡沫对10.6 μm激光衰减曲线

    Figure  14.  Attenuation curves of different thickness foam with bubble size distributions of 4−7 mm to 10.6 μm laser

    图  15  泡沫对毫米波衰减特性测试系统

    Figure  15.  Testing system for attenuation characteristics of foam to mm wave

    图  16  20 cm厚的泡沫云对8 mm波衰减效果

    Figure  16.  Attenuation effect with thickness of 20 cm to 8 mm wave

    图  17  泡径分布为2~3.5 cm的80 cm厚度泡沫云对8 mm波衰减效果

    Figure  17.  Attenuation effect with thickness of 80 cm to 8 mm wave(foam bubble size distribution of 2-3.5 cm)

    图  18  泡径分布为0.8~2 cm的80 cm厚度泡沫云对8 mm波衰减效果

    Figure  18.  Attenuation effect with thickness of 80 cm to 8 mm wave(foam bubble size distribution of 0.8-2 cm)

    图  19  厘米波衰减特性测试系统示意图

    Figure  19.  Schematic diagram of measurement system for centimeter-wave attenuation characteristics

    图  20  20 cm厚的泡沫云对2 、3 cm波衰减效果

    Figure  20.  Attenuation effect with thickness of 20 cm to 2, 3 cm centimeter-wave

    图  21  60 cm厚的泡沫云对2 、3 cm波衰减效果

    Figure  21.  Attenuation effect with thickness of 60 cm to 2, 3 cm centimeter-wave

    图  22  80 cm厚的泡沫云对2 、3 cm波衰减效果

    Figure  22.  Attenuation effect with thickness of 80 cm to 2, 3 cm centimeter-wave

    图  23  泡沫的四类界面

    Figure  23.  Four types of foam interface

    表  1  不同厚度泡沫的透过率

    Table  1.   Transmittance of different thickness of foams

    Thickness of foams
    camouflage effect
    Thickness / cm
    1213141520
    ${T_{\rm{S}}}$ 5.27%3.51%2.56%1.83%0
    ${T_{\rm{I}}}$5.35%3.21%1.93%0.59%0
    下载: 导出CSV

    表  2  泡沫对SAT-HY6800型非制冷红外焦平面热像的红外消光系数

    Table  2.   Infrared extinction coefficient of foam on un-cooling focal plane thermal image with SAT-HY6800

    ${T_{b0}}$/K${T_{a0}}$/K${T_b}$/K${T_a}$/K${C_m}$/g·m−3$l$/m${M_c}$/m2·g−1
    Background295.29317.22
    Sample 1295.29317.22294.82291.0111.940.350.451
    Sample 2295.29317.22295.03290.8110.830.410.402
    Sample 3295.29317.22301.56304.4712.030.380.449
    Sample 4295.29317.22302.61306.5311.780.350.422
    Sample 5295.29317.22302.29296.9211.050.310.430
    Avg.=0.431
    下载: 导出CSV

    表  3  泡径分布为4~7 mm的不同厚度泡沫对激光衰减平均透过率

    Table  3.   Average transmittance of laser with different thickness of foam bubble size distribution of 4−7 mm

    Thickness/cm125710
    1.06 μm
    transmittance
    57.25%47.03%26.23%12.00%6.02%
    10.6 μm transmittance61.97%52.98%41.63%23.04%7.63%
    下载: 导出CSV

    表  4  厚度为10 cm不同泡径分布的泡沫1.06 μm、10.6 μm衰减平均透过率

    Table  4.   Average transmittance of laser with thickness of 10 cm different foam bubble size distributions(1.06 μm,10.6 μm)

    Foam bubble size1.3−2.5 cm4−7 mm0.8−2 mm
    1.06 μm transmittance17.86%6.02%0
    10.6 μm transmittance48.98%7.63%0
    下载: 导出CSV

    表  5  20 cm厚的泡沫云对3 mm波实验测试结果

    Table  5.   Test results of 3 mm millimeter-wave with thickness of 20 cm foams

    CategoryMinMaxAvg
    Attenuation decibels / dB16.0813.8214.93
    Transmittance2.47%4.15%3.21%
    下载: 导出CSV

    表  6  不同厚度泡沫云对2 cm、3 cm波衰减实验测试结果

    Table  6.   Test results of 2, 3 cm centimeter-wave with different thickness foams

    Thickness /cm2 cm/dBResult of 2 cm3 cm /dBResult
    of 3 cm
    202.316.8%8.542.5%
    6012.581.2%17.492.3%
    8029.9100%18.190.5%
    下载: 导出CSV
  • [1] Guo Jianjun, Tsang Leung , Asher William, et al. Application of dense media radiative transfer theory for passive microwave remote sensing of foam covered ocean [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(5): 1019−1027. doi:  10.1109/36.921420
    [2] Ao Chi O. Electromagnetic model of thermal emission from foam-covered ocean surface using dense medium radiative transfer theory[C]// International Geoscience and Remote Sensing Symposium (IGARSS), 2000. 7: 1277-1279.
    [3] Ripperger S, Benno Wessely, Feller U. Erfassungvon dispersitaetseigenschagten mittels der dynamischen Extinktions messung Chenische Technik[Z]. 1999, 515: 258−262.
    [4] Seki N. Back-melting of a horizontal cloudy ice layer with radiative heating [J]. Journal of Heat Transfer, Transactions, 1979, 101: 90−95. doi:  10.1115/1.3450942
    [5] 杜雪峰. 水基泡沫制备及其消光特性研究[D]. 南京: 南京理工大学, 2016.

    Du Xuefeng. Study on preparation and extinction properties of PPECM aqueous foams[D]. Nanjing: Nanjing University of Science & Technology, 2016.
    [6] 杜雪峰, 潘功配, 曲家惠, 等. 傅里叶变换红外遥测光谱仪在泡沫云红外消光性能测试中的应用[J]. 现代仪器, 2012, 18(5): 49−51.

    Du Xuefeng, Pan Gongpei, Qu Jiahui, et al. Experimental study on infrared extinction ability of foams cloud [J]. Modern Instruments, 2012, 18(5): 49−51. (in Chinese)
    [7] 赵军, 潘功配, 陈昕. 泡沫红外消光影响因素的实验研究[J]. 光学学报, 2007, 27(10): 1725−1730. doi:  10.3321/j.issn:0253-2239.2007.10.001

    Zhao Jun, Pan Gongpei, Chen Xin. Experimental study on infrared attenuation factors of foam [J]. Acta Optica Sinica, 2007, 27(10): 1725−1730. (in Chinese) doi:  10.3321/j.issn:0253-2239.2007.10.001
    [8] 杜雪峰, 潘功配, 曲家惠, 等. 泡沫云对中远红外遮蔽性能测试分析[J]. 红外与激光工程, 2013, 42(S2): 412−415.

    Du Xuefeng, Pan Gongpei, Qu Jiahui, et al. Experimental study on infrared extinction ability of foams cloud [J]. Infrared and Laser Engineering, 2013, 42(S2): 412−415. (in Chinese)
    [9] 安刚, 王玄玉, 冯宗伟. 利用热像仪测试烟幕红外消光系数方法研究[J]. 现代仪器, 2006(4): 38−39. doi:  10.3969/j.issn.1672-7916.2006.04.012

    An Gang, Wang Xuanyu, Feng Zongwei. Research of measuring method about anti-infrared extinction coefficient of smoke-screen with a thermal imager [J]. Modern Instruments, 2006(4): 38−39. (in Chinese) doi:  10.3969/j.issn.1672-7916.2006.04.012
    [10] GJB 5384. 18-2005烟火药性能试验方法 第 18 部分:红外消光系数测定[S].北京: 北京总装备部军表出版发行部,2016.
    [11] 赵军. 多波段消光特性研究及消光机理探索[D]. 南京: 南京理工大学. 2007.

    Zhao Jun. Research on extinction characteristics and mechanism of multi-band[D]. Nanjing: Nanjing University of Science & Technology, 2007.(in Chinese)
  • [1] 高琳华, 崔艳霞, 梁强兵, 刘艳珍, 李国辉, 范明明, 郝玉英.  金属-无机半导体-金属光电探测器的研究进展 . 红外与激光工程, 2020, 41(): 1-19. doi: 10.3788/IRLA20201025
    [2] 暴丽霞, 乔小晶, 杨铭.  一锅水热法制备炭-铁磁体复合材料及红外消光性能研究(特约) . 红外与激光工程, 2020, 49(7): 20201020-1-20201020-6. doi: 10.3788/IRLA20201020
    [3] 夏润秋, 陈青山, 刘洋, 肖立亮.  线阵光纤激光相干合成角度扫描控制方法研究 . 红外与激光工程, 2018, 47(9): 906006-0906006(6). doi: 10.3788/IRLA201847.0906006
    [4] 王帅, 夏嘉斌, 姚齐峰, 董明利, 祝连庆.  远程激光拉曼光谱探测系统前置光学系统设计 . 红外与激光工程, 2018, 47(4): 418004-0418004(8). doi: 10.3788/IRLA201847.0418004
    [5] 王彦斌, 刘艳芳, 陈前荣, 李华, 周旋风, 任广森, 朱荣臻.  CCD光敏面上激光能量的网状分布 . 红外与激光工程, 2018, 47(S1): 125-131. doi: 10.3788/IRLA201847.S120005
    [6] 王磊, 聂劲松, 叶庆, 胡瑜泽.  0.53 μm全固态激光器热效应及其补偿技术研究 . 红外与激光工程, 2017, 46(4): 406003-0406003(7). doi: 10.3788/IRLA201746.0406003
    [7] 曾钦勇, 万勇, 秦开宇.  可应用于高效光电对抗的新颖结构激光谐振腔 . 红外与激光工程, 2017, 46(8): 806002-0806002(4). doi: 10.3788/IRLA201746.0806002
    [8] 徐记伟, 周军.  毫米波迷彩隐身涂层发射率分布数值计算 . 红外与激光工程, 2017, 46(3): 321002-0321002(5). doi: 10.3788/IRLA201746.0321002
    [9] 李艳娜, 唐力铁, 谢翔云, 尹飞, 于志闯, 沈丽娟.  固体激光远场瞬时光斑时空分布测量技术 . 红外与激光工程, 2016, 45(8): 817002-0817002(7). doi: 10.3788/IRLA201645.0817002
    [10] 盛良, 张震, 张检民, 左浩毅.  连续激光辐照CMOS相机的像素翻转效应及机理 . 红外与激光工程, 2016, 45(6): 606004-0606004(4). doi: 10.3788/IRLA201645.0606004
    [11] 施龙, 陈宁, 王兵, 邵帅, 杨词银, 董宇星, 郭汝海.  激光车载平台光路平行性检测方法 . 红外与激光工程, 2016, 45(S1): 152-156. doi: 10.3788/IRLA201645.S117002
    [12] 武伟, 陈桂明, 赵娜, 樊博璇.  激光在高速钢表面加工沟槽表面织构的实验研究 . 红外与激光工程, 2016, 45(2): 206008-0206008(8). doi: 10.3788/IRLA201645.0206008
    [13] 袁卫, 张建奇, 秦玉伟, 冯洋.  近红外光谱区光子晶体禁带与KTP缺陷研究 . 红外与激光工程, 2016, 45(1): 104005-0104005(5). doi: 10.3788/IRLA201645.0104005
    [14] 王炜强, 贾晓洪, 韩宇萌, 张晓阳, 付奎生.  定向干扰激光的红外成像建模与仿真 . 红外与激光工程, 2016, 45(6): 606005-0606005(6). doi: 10.3788/IRLA201645.0606005
    [15] 王一群, 裴丽, 李月琴, 高嵩.  三角波扫频的可调谐毫米波RoF下行链路性能分析 . 红外与激光工程, 2016, 45(5): 522001-0522001(6). doi: 10.3788/IRLA201645.0522001
    [16] 张铁, 李波, 邹焱飚.  基于条纹式激光传感器与机器人的扫描成像系统 . 红外与激光工程, 2015, 44(1): 53-58.
    [17] 张文攀, 刘艳芳, 殷瑞光, 赵宏鹏, 汪亚.  对激光精确制导武器干扰效果仿真评估标准初探 . 红外与激光工程, 2013, 42(4): 900-903.
    [18] 邱伟成, 王睿, 许中杰, 程湘爱.  基于CTIA的PV-HgCdTe线阵近红外激光响应特性 . 红外与激光工程, 2013, 42(6): 1394-1398.
    [19] 吴思捷, 赵晓蓓, 杨东升, 闫杰.  激光辐照对红外探测器的损伤 . 红外与激光工程, 2013, 42(5): 1184-1188.
    [20] 陈兆兵, 曹立华, 王兵, 庄昕宇, 陈宁, 郭如海.  中波红外激光器远距离干扰红外探测器的外场实验研究 . 红外与激光工程, 2013, 42(7): 1700-1705,1753.
  • 加载中
图(23) / 表(6)
计量
  • 文章访问数:  632
  • HTML全文浏览量:  540
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-10
  • 修回日期:  2020-04-15
  • 网络出版日期:  2020-05-26
  • 刊出日期:  2020-07-25

水基泡沫消光特性实验研究(特约)

doi: 10.3788/IRLA20201023
    作者简介:

    潘功配(1945-),男,教授,博士生导师,主要从事军事化学与光电对抗干扰等方面的研究工作。Email:pangongp@163.com

  • 中图分类号: TN976

摘要: 水基泡沫在光电对抗隐身等领域有着广泛的应用,但现有光电干扰隐身技术存在作用时间短、干扰波段单一、污染环境等问题,难以有效对抗双模、多模精确制导武器。针对上述问题研究水基泡沫配方,开展了新型水基泡沫对可见光、红外(3~5 μm、8~14 μm)、激光(1.06 μm, 10.6 μm)、毫米波(3 mm, 8 mm)和厘米波(2 cm, 3 cm)的消光性能实验以及水基泡沫对8~14 μm波段热像遮蔽干扰效应测试,讨论了水基泡沫消光机理,指出以水基泡沫形成泡沫云或使之与人工雾复合构成幕障,有望获取一种“宽频谱”、“全波段”、“环保型”的新型烟幕武器装备。

English Abstract

    • 在众多的光电对抗隐身干扰装备及防御措施中,类似烟幕的消极光电对抗隐身干扰装备,以其独特的隐身干扰效能成为高技术光电武器的“克星”,为现代高技术战场所需求。很多研究发现,泡沫可以干扰声波、雷达等信号。美国Jianjun Guo等研究了海洋泡沫对微波通信的影响[1];麻省理工学院研究了泡沫对微波的散射、吸收特性[2];德国RIpperger和Siegfried研究了微粒、泡沫对激光的影响特性[3];日本N.Seki在研究中发现气泡对可见光和红外光强烈的散射现象[4]。美军认为“烟幕是一个比我们曾经认为的要重要得多的战场因素,无论是我方采用它还是对抗敌方采用它,它完全应该被作为一个主要的在计划时要考虑的因素”。为促进烟幕武器向着“宽频谱”、“全波段”和“环保型”方向发展,美军研究出了“车载式泡沫伪装系统”(USP 4732181 专利),系利用压力将与水混合的水基泡沫发生剂喷洒出来形成泡沫伪装。俄罗斯来华专家介绍了一种干扰波段为0.4 μm~3.75 cm的幕障遮蔽干扰防卫装置,能够对可见光、红外、毫米波和厘米波实施全遮蔽干扰,使用专用发生器装置,可以在30 min内将16辆坦克车队有效隐身遮蔽40 min之久;用于干扰弹爆炸分散形成幕障干扰,成功率为80%,干扰持续时间16~17 s;因不造成悬浮微粒飘浮于大气中,故而为“环保型”。

      鉴于上述,此文试图研究水基泡沫及其消光特性,意在获取泡沫幕障,进而研发水基泡沫云或水基泡沫与人工雾复合的“宽频谱”、“全波段”和“环保型”的烟幕武器装备。

      为此,首先开展水基泡沫对可见光、红外、激光、毫米波、厘米波消光性能实验测试和水基泡沫对热成像遮蔽干扰有效性研究。

    • 以羧酸类、硫酸盐类、磺酸盐类、磺化琥珀酸盐类等为起泡剂,以明胶、皂素、甲基纤维素等高分子化合物为稳泡剂,即可制取水基泡沫试样。鉴于文中研究需要充分考虑到泡沫适用性和宽频谱消光特性,通过配方筛选研究发现,以低表面张力的阴离子AES表面活性剂为起泡剂和以聚乙烯醇为稳泡剂的试样,可满足要求。进一步研究确立了实验试样配方为:水+起泡剂(AES和SDS复配)+稳泡剂(聚乙烯醇)+功能添加剂[5]。实验试样采用自制泡沫形成装置制备。泡沫试样为独立气泡,如图1所示;离散气泡群,如图2所示;粘连泡沫聚集体,如图3所示;漂浮的云状泡沫云,如图4所示。测试时,涉及泡沫云的泡沫厚度尺寸由自制泡沫筒给定(筒长即为泡沫厚度尺寸),如图5所示。

      图  1  独立气泡

      Figure 1.  Independent air bubble

      图  2  离散泡沫群

      Figure 2.  Discrete foam group

      图  3  粘连泡沫聚集体

      Figure 3.  Conglutinated foam aggregate

      图  4  泡沫云

      Figure 4.  Foams cloud

      图  5  测试用水基泡沫与取样用泡沫筒

      Figure 5.  Aqueous foam for measurement and foam cylinder for sampling

    • 主要对可见光、红外(3~5 μm,8~14 μm)、激光(1.06 μm,10.6 μm)、毫米波(3 mm,8 mm)和厘米波(2 cm, 3 cm)的消光性能以及对8~14 μm波段热像遮蔽干扰效应进行了实验。

    • 水基泡沫对可见光遮蔽性能实验测试,采用了瞬变光源分光测试仪(北京奥博迪光电技术有限公司、北京师范大学光电仪器厂产品),其光谱工作波段为0.40~1.00 µm,测试系统如图6所示。不同厚度泡沫对可见光遮蔽光谱透过率TS(可见光光强透过率)和光强透过率TI结果如表1所示。

      图  6  测试原理图

      Figure 6.  Principle of measurement

      表 1  不同厚度泡沫的透过率

      Table 1.  Transmittance of different thickness of foams

      Thickness of foams
      camouflage effect
      Thickness / cm
      1213141520
      ${T_{\rm{S}}}$ 5.27%3.51%2.56%1.83%0
      ${T_{\rm{I}}}$5.35%3.21%1.93%0.59%0
    • 采用(德)OPAG33傅里叶变换红外遥测光谱仪实验测试了泡沫的红外(3~5 μm, 8~14 μm)消光性能[6]。OPAG33测试系统由光源(标准红外灯)、泡沫发生器、OPAG33 FTIR光谱仪及计算机数据处理系统组成,如图7所示。测试时,泡沫试样选用了由泡沫发生器产生的泡沫云,测试场景如图8所示。

      图  7  OPAG33测试系统示意图

      Figure 7.  Schematic of OPAG33 testing

      图  8  泡沫云红外消光测试场景图

      Figure 8.  Scene of infrared extinction test of foams cloud

      测试时,首先采集背景在某一波段的辐射光谱图,然后置入目标再测得同一波段下的辐射光谱图,二者辐射光谱图的比值即为被测的透过率,由公式(1)给出:

      $$\tau (\nu ,T) = \frac{{{S_s}(\nu ,T)}}{{{S_b}(\nu ,T)}}$$ (1)

      式中:$\tau (\nu ,T)$为泡沫红外辐射透过率,%;${S_s}(\nu ,T)$为均匀泡沫时的单通道光谱;${S_b}(\nu ,T)$为背景单通道光谱;$\nu $为光谱频率;cm−1$T$为绝对温度,K。

      泡沫的红外质量消光系数由公式(2)计算:

      $$\alpha (\nu ,T) = - \frac{1}{{{C_m} \cdot L}}\ln [\tau (\nu ,T)]$$ (2)

      式中:$\alpha (\nu ,T)$为质量消光系数,m2·g−1${C_m}$为泡沫质量浓度,g·m−3$L$为测试光程,m。

      按上述方法测得的泡沫红外透过率随时间变化光谱图如图9所示。消光系数与波长的关系如图10所示[7]

      图  9  不同波长下,泡沫红外透过率随时间变化光谱图

      Figure 9.  Relation between infrared transmittance and time at different wavelengths

      图  10  泡沫红外消光系数与波长的关系图

      Figure 10.  Foam infrared extinction coefficient vs wavelength diagram

      为探索水基泡沫对红外成像遮蔽干扰效应,采用SAT-HY6800型非制冷红外焦平面热像仪(320×240非制冷整体热敏电阻焦平面探测器,工作波段为8~14 μm,光阑为Ф50 mm,全屏伪彩显示、全屏测温)开展了实验。测试时,试样为离散泡沫群(泡径为0.5~3.5 cm,光程上泡沫数量约20个),环境温度为+20 ℃,空气相对湿度为40%,遮蔽干扰效果如图11所示,平均红外消光系数为0.431 m2·g−1,如表2所示[8]

      表 2  泡沫对SAT-HY6800型非制冷红外焦平面热像的红外消光系数

      Table 2.  Infrared extinction coefficient of foam on un-cooling focal plane thermal image with SAT-HY6800

      ${T_{b0}}$/K${T_{a0}}$/K${T_b}$/K${T_a}$/K${C_m}$/g·m−3$l$/m${M_c}$/m2·g−1
      Background295.29317.22
      Sample 1295.29317.22294.82291.0111.940.350.451
      Sample 2295.29317.22295.03290.8110.830.410.402
      Sample 3295.29317.22301.56304.4712.030.380.449
      Sample 4295.29317.22302.61306.5311.780.350.422
      Sample 5295.29317.22302.29296.9211.050.310.430
      Avg.=0.431

      图  11  泡沫对SAT-HY6800型非制冷红外焦平面热像遮蔽干扰效果

      Figure 11.  Masking effect with SAT-HY6800 focal plane thermal image

      以黑体辐射炉为目标、烟幕柜壁为背景,由于透过率$\tau $[9-10]为:

      $$\tau = \frac{{{L_b} - {L_a}}}{{{L_{b0}} - {L_{a0}}}}$$ (3)

      所以:

      $$\begin{split} {M_c} = &\dfrac{{ - 1}}{{{C_m} \cdot l}}\ln \left( \tau \right) =\\ &\dfrac{1}{{{C_m} \cdot l}}\ln \left( {\dfrac{{{L_{b0}} - {L_{a0}}}}{{{L_b} - {L_a}}}} \right) \\ \end{split} $$ (4)

      式中:${M_c}$为红外消光系数,m2·g−1${C_m}$为泡沫质量浓度,g·m−3$l$为测试光程,即泡沫层的厚度,m;${L_b}$为有泡沫时目标亮度,W·(m2∙sr)−1${L_a}$为有泡沫时背景亮度,W·(m2∙sr)−1${L_{b0}}$为无泡沫时目标亮度,W·(m2∙sr)−1${L_{a0}}$为无泡沫时背景亮度,W·(m2∙sr)−1

      而光的亮度$L$与辐射能量$M$的关系为:

      $$L = \dfrac{1}{{\text{π}}}M$$

      根据Stefan-Boltzmann定律$M = \sigma {T^4}$,可推导出:

      $$\begin{split} {M_c} = &\dfrac{1}{{{C_m} \cdot l}}\ln \left( {\dfrac{{{{\sigma T_{b0}^4} / \text{π} } - {{\sigma T_{a0}^4} / \text{π} }}}{{{{\sigma T_b^4} / \text{π} } - {{\sigma T_a^4} / \text{π} }}}} \right) \\ = &\dfrac{1}{{{C_m} \cdot l}}\ln \left( {\dfrac{{T_{b0}^4 - T_{a0}^4}}{{T_b^4 - T_a^4}}} \right) \end{split} $$ (5)

      式中:$T$为温度,K;$\sigma $为Stefan-Boltzmann常数,5.673×10−12 W∙ (cm2∙K4)−1${T_b}$为背景温度,即有泡沫时的背景平均温度,K;${T_a}$为目标温度,即有泡沫时的目标区平均温度,K;${T_{b0}}$为背景起始温度,即无泡沫时的背景平均温度,K;${T_{a0}}$为目标起始温度,即无泡沫时的目标区平均温度,K。

    • 泡沫对激光的消光性能测试,采用中国科学院安徽光学精密机械研究所制造的型号为YC-1.06-1D、YC-10.6-1D的1.06 μm和10.6 μm激光烟幕测试仪,测试系统如图12所示。

      图  12  对激光(1.06 μm、10.6 μm)消光性能实验测试系统

      Figure 12.  Extinction performance test system for laser(1.06, 10.6 μm)

      采用泡径分布为4~7 mm泡沫,其厚度分别为1 、2 、5 、7 和10 cm时,对激光的消光性能测试结果如图13图14所示,其平均透过率如表3所示。厚度为10 cm不同泡径分布的泡沫对1.06 、10.6 μm激光衰减平均透过率如表4所示。

      图  13  泡径分布为4~7 mm的不同厚度泡沫对1.06 μm激光衰减曲线

      Figure 13.  Attenuation curves of different thickness foam with different bubble size distributions of 4−7 mm to 1.06 μm laser

      图  14  泡径分布为4~7 mm的不同厚度泡沫对10.6 μm激光衰减曲线

      Figure 14.  Attenuation curves of different thickness foam with bubble size distributions of 4−7 mm to 10.6 μm laser

      表 3  泡径分布为4~7 mm的不同厚度泡沫对激光衰减平均透过率

      Table 3.  Average transmittance of laser with different thickness of foam bubble size distribution of 4−7 mm

      Thickness/cm125710
      1.06 μm
      transmittance
      57.25%47.03%26.23%12.00%6.02%
      10.6 μm transmittance61.97%52.98%41.63%23.04%7.63%

      表 4  厚度为10 cm不同泡径分布的泡沫1.06 μm、10.6 μm衰减平均透过率

      Table 4.  Average transmittance of laser with thickness of 10 cm different foam bubble size distributions(1.06 μm,10.6 μm)

      Foam bubble size1.3−2.5 cm4−7 mm0.8−2 mm
      1.06 μm transmittance17.86%6.02%0
      10.6 μm transmittance48.98%7.63%0
    • 采用电子科技集团第五十研究所毫米波辐射参数采集仪(3、8 mm),开展了泡沫对3、8 mm波衰减特性的测试实验,测试系统如图15所示。

      图  15  泡沫对毫米波衰减特性测试系统

      Figure 15.  Testing system for attenuation characteristics of foam to mm wave

      经实验,泡沫对毫米波具有良好的衰减特性。同等条件下8 mm波的衰减效果优于3 mm波。当采用20 cm厚的泡沫云为试样时,3 mm波衰减分贝数值和功率透过率如表5所示;8 mm波的衰减效果如图16所示(由图可见,衰减峰值可达20 dB以上)。

      表 5  20 cm厚的泡沫云对3 mm波实验测试结果

      Table 5.  Test results of 3 mm millimeter-wave with thickness of 20 cm foams

      CategoryMinMaxAvg
      Attenuation decibels / dB16.0813.8214.93
      Transmittance2.47%4.15%3.21%

      图  16  20 cm厚的泡沫云对8 mm波衰减效果

      Figure 16.  Attenuation effect with thickness of 20 cm to 8 mm wave

      实验发现,泡沫云泡沫泡径大小分布对毫米波衰减效果影响显著。泡径为2~3.5 cm的80 cm厚度泡沫云对8 mm波衰减效果如图17所示;泡径为0.8~2 cm的80 cm厚度泡沫云对8 mm波衰减效果如图18所示。

      图  17  泡径分布为2~3.5 cm的80 cm厚度泡沫云对8 mm波衰减效果

      Figure 17.  Attenuation effect with thickness of 80 cm to 8 mm wave(foam bubble size distribution of 2-3.5 cm)

      图  18  泡径分布为0.8~2 cm的80 cm厚度泡沫云对8 mm波衰减效果

      Figure 18.  Attenuation effect with thickness of 80 cm to 8 mm wave(foam bubble size distribution of 0.8-2 cm)

    • 为探索泡沫对厘米波的衰减特性,采用南京理工大学微波实验室的厘米波信号采集分析器(Agilent / HP 8720 D)配合厘米波信号发射器(发射功率14.8 mW)和接收器(扫描周期20 ms,间距3 m),开展了泡沫对厘米波衰减性能实验测试。泡沫对厘米波的衰减性能实验测试系统,如图19所示。

      图  19  厘米波衰减特性测试系统示意图

      Figure 19.  Schematic diagram of measurement system for centimeter-wave attenuation characteristics

      当泡沫试样厚度为20、60 和80 cm时,其对2、3 cm波的衰减效果如图20图21图22所示,其衰减值与衰减率如表6所示[5]

      图  20  20 cm厚的泡沫云对2 、3 cm波衰减效果

      Figure 20.  Attenuation effect with thickness of 20 cm to 2, 3 cm centimeter-wave

      图  21  60 cm厚的泡沫云对2 、3 cm波衰减效果

      Figure 21.  Attenuation effect with thickness of 60 cm to 2, 3 cm centimeter-wave

      图  22  80 cm厚的泡沫云对2 、3 cm波衰减效果

      Figure 22.  Attenuation effect with thickness of 80 cm to 2, 3 cm centimeter-wave

      表 6  不同厚度泡沫云对2 cm、3 cm波衰减实验测试结果

      Table 6.  Test results of 2, 3 cm centimeter-wave with different thickness foams

      Thickness /cm2 cm/dBResult of 2 cm3 cm /dBResult
      of 3 cm
      202.316.8%8.542.5%
      6012.581.2%17.492.3%
      8029.9100%18.190.5%
    • 通过以上实验,得出以下结论:

      (1)实验研究结果表明:水基泡沫对可见光、红外、激光、毫米波乃至厘米波均有良好的消光特性。烟幕消光靠的是烟幕中气溶胶“微粒”对光的吸收与散射,水基泡沫消光机制也不例外,也是靠泡沫中一个个的“气泡”对光的吸收与散射。但“气泡”与烟幕中气溶胶“微粒”二者有差异,水基泡沫尤其是粘连泡沫聚集体(泡沫云)是多面体结构,多界面效应决定了泡沫具有较强的消光性能。以球面体“气泡”为例,它有四类界面[11],如图23所示。入射光在泡沫液膜内多次反射和折射,光程增加,对入射电磁波耗能必加大,消光性能必然优于一般气溶胶烟幕。

      图  23  泡沫的四类界面

      Figure 23.  Four types of foam interface

      (2)水基泡沫,因水原料不存在污染,属于“环保型”,又因水分子中的-OH基对红外具有良好的本征吸收功效,红外消光性能佳,开发研究以水为原料的烟幕武器值得提倡。

      (3)若以水基泡沫形成泡沫云或使之与人工雾复合构成幕障为工程化研究目标,在完善稳泡剂、功能添加剂和快速形成泡装置技术研究基础上,是一种可以获取“宽频谱”、“全波段”、“环保型”的新型烟幕武器装备。

参考文献 (11)

目录

    /

    返回文章
    返回