留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳秒脉宽激光烧蚀典型金属推进性能实验研究

李明雨 叶继飞 于程浩 杨青林 孔红杰

李明雨, 叶继飞, 于程浩, 杨青林, 孔红杰. 纳秒脉宽激光烧蚀典型金属推进性能实验研究[J]. 红外与激光工程, 2021, 50(S2): 20210277. doi: 10.3788/IRLA20210277
引用本文: 李明雨, 叶继飞, 于程浩, 杨青林, 孔红杰. 纳秒脉宽激光烧蚀典型金属推进性能实验研究[J]. 红外与激光工程, 2021, 50(S2): 20210277. doi: 10.3788/IRLA20210277
Li Mingyu, Ye Jifei, Yu Chenghao, Yang Qinglin, Kong Hongjie. Experimental study on propulsive performance of typical metal ablated by nanosecond pulse width laser[J]. Infrared and Laser Engineering, 2021, 50(S2): 20210277. doi: 10.3788/IRLA20210277
Citation: Li Mingyu, Ye Jifei, Yu Chenghao, Yang Qinglin, Kong Hongjie. Experimental study on propulsive performance of typical metal ablated by nanosecond pulse width laser[J]. Infrared and Laser Engineering, 2021, 50(S2): 20210277. doi: 10.3788/IRLA20210277

纳秒脉宽激光烧蚀典型金属推进性能实验研究

doi: 10.3788/IRLA20210277
详细信息
    作者简介:

    李明雨,男,硕士生,主要从事激光航天应用方面的研究

    通讯作者: 叶继飞,男,副研究员,博士生导师,博士,主要从事激光推进技术方面的研究。
  • 中图分类号: TN249

Experimental study on propulsive performance of typical metal ablated by nanosecond pulse width laser

  • 摘要: 为研究不同金属材料的激光烧蚀推进性能,对常见的七种金属材料:Al,Fe,Ni,Cu,Y,Ag,Au,使用波长1 064 nm,脉宽8 ns的Nd:YAG激光器在大气下进行烧蚀,测量了烧蚀质量、冲量、冲量耦合系数、比冲和能量转化效率等推进性能参数,获得了激光功率密度对推进性能的影响规律。实验结果表明:相同激光功率密度下,Fe的烧蚀质量最大,Y的烧蚀质量最小;Al,Au,Cu的冲量较大,Ag的冲量最小;Au的冲量耦合系数和比冲均值在七种金属材料中最大,分别在激光功率密度为$1.72 \times {10^{10}}\;{\rm{W}}/{\rm{c}}{{\rm{m}}^2}$${{2}}{{.98}} \times {10^{10}}\;{\rm{W}}/{\rm{c}}{{\rm{m}}^2}$时达到40.7 μN/W和500 s的最大值,平均能量转化效率可达6%。
  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of experimental equipment

    图  2  实验场景图

    Figure  2.  Experiment scene diagram

    图  3  单脉冲烧蚀量与激光功率密度的变化关系

    Figure  3.  Relationship between monopulse ablation and laser power density

    图  4  单脉冲冲量与激光功率密度的变化关系

    Figure  4.  Relationship between monopulse impulse and laser power density

    图  5  冲量耦合系数与激光功率密度的变化关系

    Figure  5.  Relationship between impulse coupling coefficient and laser power density

    图  6  比冲与激光功率密度的变化关系

    Figure  6.  Relationship between specific impulse and laser power density

    图  7  金属金的冲量耦合系数定标关系

    Figure  7.  Scaling relation of impulse coupling coefficient of metal Au

    图  8  不同激光功率密度下的能量转化效率

    Figure  8.  Energy conversion efficiency under different laser power densities

    表  1  七种金属材料的熔沸点及第一电离能

    Table  1.   Melting boiling point and the first ionization energy of seven metal materials

    MetalMelting
    point/℃
    Boiling
    point/℃
    First ionization energy/
    kJ·mol−1
    Fe1 5352 750762.5
    Al6602 500577.5
    Cu1 0832 580745.5
    Ni1 4532 732737.1
    Au1 0622 966890.1
    Ag9612 210731.0
    Y1 5223 338600.0
    下载: 导出CSV

    表  2  七种金属材料的电阻率(单位:10−8 Ω·m,20 ℃)

    Table  2.   Resistivity of seven metal materials (Unit: 10−8 Ω·m,20 ℃)

    MetalFeAlCuNiAuAgY
    Resistivity9.72.71.76.82.41.659.6
    下载: 导出CSV

    表  3  平均单脉冲烧蚀质量(μg)与冲量(μN·s)

    Table  3.   Average monopulse ablation mass (μg)and impulse (μN·s)

    MetalAlFeNiCuYAgAu
    $\overline {\Delta m} $0.71.60.51.30.20.70.4
    $\overline I $2.52.52.52.81.81.22.7
    下载: 导出CSV
  • [1] Marsil A C, Silva, Daduí C G, et al. A review of MEMS micropropulsion technologies for CubeSats and PocketQubes [J]. Acta Astronautica, 2018, 143: 234-243.
    [2] Levchenko I, Bazaka K, Ding Y J, et al. Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers [J]. Defense & Aerospace Week, 2018, 5(1): 1-36.
    [3] Tan S, Wu J J, Zhang Y, et al. Advances in laser-supported space micropropulsion [J]. Journal of Propulsion Technology, 2018, 39(11): 2415-2428. (in Chinese)
    [4] Jonathan K, AndrA A, Isak I B, et al. Micro-propulsion based on vacuum arcs [J]. Defense & Aerospace Week, 2019, 125(22): 1-16.
    [5] Ranjan R, Karthikeyan K, Riaz F, et al. Cold gas propulsion microthruster for feed gas utilization in micro satellites [J]. Applied Energy, 2018, 220: 921-933.
    [6] Hang G R, Hong X, Kang X L. Present situation and development trend of space propulsion technology abroad [J]. Journal of Rocket Propulsion, 2013, 39(5): 7-15. (in Chinese)
    [7] Hong Y J. Laser ablation micro-thruster for attitude and orbit control of microsatellite [J]. Journal of Equipment Academy, 2013, 24(6): 57-61. (in Chinese)
    [8] Hua Z H, Guo N, Mao C L, et al. Development situation of laser solid micro-thrust technique [J]. Chemical Propellants & Polymeric Materials, 2018, 16(1): 13-18. (in Chinese)
    [9] Pakhomov A V, Thompson S M, Gregory D A. Ablative laser propulsion: a study of specific impulse, thrust and efficiency[C]//AIP Conference Proceedings. 2003, 664: 194-205.
    [10] Dou Z G, Yao H L, Wang J, et al. Researchon the propulsive performance of laser propulsiv-e working medium [J]. Journal of the Academy of Equipment Command & Technology, 2006(6): 99-103. (in Chinese)
    [11] Phipps C R, Birkan M, Bohn W, et al. Review: Laser-ablation propulsion [J]. Journal of Propulsion and Pouwer, 2010, 26(4): 609-637. doi:  10.2514/1.43733
    [12] Yasir J, Humaima S, Ahmad R, et al. Measurement of ablative laser propulsion parameters for aluminum, Co–Ni ferrite and polyurethane polymer [J]. Applied Physics A-Materials Science & Processing, 2013: 110(1):207-210.
    [13] Du B D, Xing B Y, Ye J F, et al. Experiment investigation of propulsion performance of metals ablated by nanosecond laser [J]. Infrared and Laser Engineering, 2020, 49(S2): 20200086. (in Chinese) doi:  10.3788/IRLA20200086
    [14] Hong Y J, Zhou W J, Wang G Y. Methods of micro thrust measurement and analysis of its key lssues [J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2287-2299. (in Chinese)
    [15] Ye J F, Hong Y J, Li N L, et al. Laser ablation microthruster and its performance test[C]//Proceedings of the 38th Technical Exchange Conference and the 2nd Joint Conference on Space and Space Power of China Aerospace Third Professional Information Network, 2017: 37-43. (in Chinese)
    [16] Zhou W J, Hong Y J, Ye J F. Direct measurement method of specific impulse for pulse laser ablation micropropulsion [J]. Journal of Propulsion Technology, 2017, 38(6): 1434-1440. (in Chinese)
    [17] Jin X, Wu W T, Zhou W J , et al. Design method of micro-impulse measuring system based on pivots for pulsed micro-thruster [J]. Infrared and Laser Engineering, 2019, 48(S1): S117005. (in Chinese)
    [18] Ye J F, Hong Y J, Wang G Y, et al. Measurement method for microgram amounts laser ablation mass [J]. Journal of Propulsion Technology, 2010, 31(3): 372-376. (in Chinese)
    [19] Sun C W, Lu Q S, Fan Z X, et al. Laser Irradiation Effect[M]. Beijing: National Defense Industry Press, 2002: 136-141. (in Chinese)
    [20] Wen M, Li N L, Wu J. Experimental study on impulse coupling characteristics of 532 nm/1 064 nm laser ablated Al target [J]. Infrared and Laser Engineering, 2017, 46(S1): S106005. (in Chinese)
  • [1] 高贺岩, 金星, 李兰, 姚猛, 王莹.  能量密度对毫秒脉宽激光烧蚀铝靶物质迁移机制的影响 . 红外与激光工程, 2021, 50(S2): 20210264-1-20210264-6. doi: 10.3788/IRLA20210264
    [2] 于程浩, 周伟静, 常浩, 陈一夫, 郭威.  纳秒激光毫米级光斑辐照典型金属材料冲量耦合特性 . 红外与激光工程, 2021, 50(8): 20200390-1-20200390-6. doi: 10.3788/IRLA20200390
    [3] 黄宏坤, 来建成, 陆健, 李振华.  Nd:YAG纳秒脉冲激光水下烧蚀锗靶研究 . 红外与激光工程, 2020, 49(8): 20190498-1-20190498-6. doi: 10.3788/IRLA20190498
    [4] 杜邦登, 邢宝玉, 叶继飞, 李南雷.  纳秒激光烧蚀金属推进性能的实验研究 . 红外与激光工程, 2020, 49(S2): 20200086-20200086. doi: 10.3788/IRLA20200086
    [5] 王震, 付文静, 张蓉竹.  飞秒激光多脉冲烧蚀金属铁的数值模拟 . 红外与激光工程, 2019, 48(7): 706002-0706002(5). doi: 10.3788/IRLA201948.0706002
    [6] 朱孟真, 程勇, 陈霞, 魏靖松, 刘旭, 曹海源, 谭朝勇.  不同制式脉冲激光冲量耦合效应研究 . 红外与激光工程, 2019, 48(8): 805004-0805004(8). doi: 10.3788/IRLA201948.0805004
    [7] 陈川, 龚自正, 杨武霖, 李明.  不规则目标旋转状态对激光烧蚀驱动冲量的影响 . 红外与激光工程, 2019, 48(S1): 6-14. doi: 10.3788/IRLA201948.S106002
    [8] 林正国, 金星, 常浩.  脉冲激光大光斑辐照空间碎片冲量耦合特性研究 . 红外与激光工程, 2018, 47(12): 1243001-1243001(6). doi: 10.3788/IRLA201847.1243001
    [9] 金星, 洪延姬, 常浩, 李南雷.  用于激光微烧蚀冲量测量噪声误差的蒙特卡洛分析方法 . 红外与激光工程, 2018, 47(11): 1102002-1102002(7). doi: 10.3788/IRLA201847.1102002
    [10] 金星, 常浩, 叶继飞.  超短脉冲激光烧蚀冲量耦合测量方法 . 红外与激光工程, 2017, 46(3): 329002-0329002(7). doi: 10.3788/IRLA201746.0329002
    [11] 蔡颂, 熊彪, 陈根余, 吴吉平.  青铜金刚石砂轮的激光整形与修锐 . 红外与激光工程, 2017, 46(4): 406008-0406008(10). doi: 10.3788/IRLA201746.0406008
    [12] 文明, 李南雷, 吴洁.  532 nm/1 064 nm激光烧蚀铝靶冲量耦合特性实验研究 . 红外与激光工程, 2017, 46(S1): 24-28. doi: 10.3788/IRLA201746.S106005
    [13] 贺敏波, 马志亮, 韦成华, 刘卫平, 吴涛涛.  热解对碳纤维/环氧复合材料激光烧蚀的影响 . 红外与激光工程, 2016, 45(3): 306001-0306001(4). doi: 10.3788/IRLA201645.0306001
    [14] 程勇, 朱孟真, 马云峰, 魏靖松, 刘旭, 丁方正, 谭朝勇, 陈霞, 郭延龙, 初华.  激光复合损伤机理与效应研究 . 红外与激光工程, 2016, 45(11): 1105005-1105005(7). doi: 10.3788/IRLA201645.1105005
    [15] 常浩, 金星, 林正国.  真空环境下脉冲激光烧蚀等离子体羽流特性分析 . 红外与激光工程, 2016, 45(12): 1206014-1206014(6). doi: 10.3788/IRLA201645.1206014
    [16] 朱殷, 陈浩, 徐融, 赵飞.  优化的一维激光清理空间碎片流体力学模型 . 红外与激光工程, 2016, 45(S1): 177-182. doi: 10.3788/IRLA201645.S129002
    [17] 吴东江, 周思雨, 姚龙元, 马广义, 庄娟.  飞秒激光烧蚀石英玻璃微槽截面形状仿真 . 红外与激光工程, 2015, 44(8): 2243-2249.
    [18] 郑义军, 谭荣清, 石海霞.  空气中激光烧蚀铝靶冲量耦合系数实验(Ⅱ) . 红外与激光工程, 2015, 44(1): 76-79.
    [19] 叶继飞, 洪延姬, 李南雷.  纳秒激光烧蚀液态工质冲量耦合特性研究 . 红外与激光工程, 2015, 44(1): 102-106.
    [20] 韩立强, 王志斌.  自适应光学校正下空间光通信的光纤耦合效率及斯特列尔比 . 红外与激光工程, 2013, 42(1): 125-129.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  31
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-25
  • 修回日期:  2021-06-20
  • 刊出日期:  2021-11-02

纳秒脉宽激光烧蚀典型金属推进性能实验研究

doi: 10.3788/IRLA20210277
    作者简介:

    李明雨,男,硕士生,主要从事激光航天应用方面的研究

    通讯作者: 叶继飞,男,副研究员,博士生导师,博士,主要从事激光推进技术方面的研究。
  • 中图分类号: TN249

摘要: 为研究不同金属材料的激光烧蚀推进性能,对常见的七种金属材料:Al,Fe,Ni,Cu,Y,Ag,Au,使用波长1 064 nm,脉宽8 ns的Nd:YAG激光器在大气下进行烧蚀,测量了烧蚀质量、冲量、冲量耦合系数、比冲和能量转化效率等推进性能参数,获得了激光功率密度对推进性能的影响规律。实验结果表明:相同激光功率密度下,Fe的烧蚀质量最大,Y的烧蚀质量最小;Al,Au,Cu的冲量较大,Ag的冲量最小;Au的冲量耦合系数和比冲均值在七种金属材料中最大,分别在激光功率密度为$1.72 \times {10^{10}}\;{\rm{W}}/{\rm{c}}{{\rm{m}}^2}$${{2}}{{.98}} \times {10^{10}}\;{\rm{W}}/{\rm{c}}{{\rm{m}}^2}$时达到40.7 μN/W和500 s的最大值,平均能量转化效率可达6%。

English Abstract

    • 近年来,随着商业航天及相关产业技术的发展,为卫星提供轨道维持,姿态调整动力的关键技术——空间推进技术也得到了迅猛发展[1-3]。当前,空间推进技术主要包括冷气推进、化学推进、电推进三大领域[4-6],而激光烧蚀推进技术相对而言具有体积小,冲量元小,控制精度高,比冲高等优点[7-8]

      影响激光烧蚀推进性能的因素有很多,主要包含激光器参数,烧蚀工质及烧蚀效果(靶坑大小,光斑形貌等)。其中不同材料的激光烧蚀推进性能是激光推进技术研究的热点,金属材料因其高比冲的推进性能特性备受关注。以金属作为工质,受到高能激光辐照后,金属熔融汽化,形成高速反喷羽流(主要成分为金属蒸气,等离子体)产生推力。Pakhomov A V等[9]对各种金属进行激光烧蚀试验发现:冲量耦合系数随原子量增加而增加,比冲则相反,认为中等原子量的靶材可以兼顾比冲和冲量耦合系数。其中金属铝作为烧蚀工质得到的比冲最高,可达4 000 s; 窦志国等[10]对大量金属材料烧蚀性能进行了对比分析,提出了根据推进剂的物理性能进行优选的方法,认为铜、铁、锌是比较好的金属推进剂。Phipps[11]通过研究激光脉宽对推进性能的影响发现,当激光脉宽小于纳秒量级时,激光能量密度较高,热传导效应微弱,任何类型的工质都可达到烧蚀阈值形成推力,使用金属工质可以得到极高的的比冲。对PVC:C,GLYN:C,GAP:IR. GAP:C,Au等五种材料进行推进性能测试。结果发现,相同实验条件下,烧蚀Au的比冲最高,可达3660 s。

      与聚合物和含能工质相比,金属工质受高能激光作用后的离化率高,拥有更高的比冲。国内外许多学者已经对Al,Cu,Ni,Fe等金属进行了激光烧蚀的推进性能测试[12-13]。高激光功率密度(${10^{10}}\;{\rm{W}}/{\rm{c}}{{\rm{m}}^2}$量级)下的冲量、比冲等推进性能的实验研究不够全面,研究条件不够统一,性能的对比分析不具有对比性。文中使用纳秒脉宽激光对Al,Cu,Ni,Fe,Y,Au,Ag进行了重复烧蚀实验,测得七种金属材料在不同的激光功率密度下的冲量、烧蚀质量、冲量耦合系数、比冲、能量转化效率等推进性能参数,结合金属的电离能、熔沸点、电阻率等物理性质对金属材料在纳秒脉宽激光作用下的推进性能进行了对比分析,所获得的金属材料激光烧蚀性能规律为空间激光推进工质材料的选择提供了参考。

    • 激光烧蚀推进性能的三个主要参数是冲量$I$,冲量耦合系数${C_m}$和比冲${I_{sp}}$

      冲量耦合系数${C_m}$是激光烧蚀工质过程中将入射激光能量转化为冲量的能力,它与冲量$I$和入射激光能量$E$的关系为:

      $$ {C_m} = \frac{{\Delta m\nu }}{E} = \frac{I}{{{E_{}}}} $$ (1)

      式中:$\Delta m$为烧蚀质量;$\nu $为羽流喷射速度;$E$为入射激光能量。比冲${I_{sp}}$是工质在激光烧蚀推进过程中,可以提供冲量的能力,和烧蚀量与冲量相关:

      $$ {I_{sp}} = \frac{I}{{\Delta mg}} $$ (2)

      ${C_m}$${I_{sp}}$都是冲量$I$的复合量,入射激光能量$E$、工质烧蚀质量$\Delta m$等都可以通过实验仪器直接测量得到。所以冲量$I$的测量是最为关键的。

      冲量$I$为激光烧蚀过程中喷射的等离子体等,所产生的反作用力对时间的积分。冲量的测量通常利用摆的力学效应进行测量,常用的μN量级推力测量系统有扭摆型,单摆型,悬臂型[14]。文中采用可有效分离推力器重力和推力,灵敏度、信噪比调节简单的扭摆系统对冲量进行间接测量。扭摆横梁受到微推力作用后致使挠性枢轴会产生微小转动,通过位移传感器可测得冲量加载后第一次摆动的最大线位移。根据以上测量原理[15],可得冲量$I$的计算公式:

      $$ I = \frac{k}{{{l_1}{l_2}{\omega _n}}}s $$ (3)

      式中:$k$为扭摆的扭转刚度系数;${l_1}$为位移传感器与挠性枢轴的距离(测量臂);${l_2}$为脉冲激光烧蚀作用点与挠性枢轴的距离(力臂);${\omega _n}$为扭摆横梁角频率;$s$为冲量加载后第一次摆动的最大线位移;$k$,${l_1}$,${l_2}$均为系统参数。所以,冲量$I$与最大线位移$s$间的线性系数$A = \dfrac{k}{{{l_1}{l_2}{\omega _n}}}$可通过标定获得[16]

    • 实验装置示意图如图1所示,由激光器、冲量测量扭摆、隔离罩等部分组成。

      实验中采用单脉冲能量最高$40{\rm{0}}$ mJ,波长$1\;064$ nm,脉宽为$10$ ns的Nd:YAG激光器作为能量源,最高功率密度可达${\rm{1}}{{\rm{0}}^{{\rm{10}}}}\;{\rm{W}}{\rm{/}}{\rm{c}}{{\rm{m}}^2}$,最小光斑直径约为200 µm。

      冲量测量扭摆主要由枢轴、测量横梁、位移传感器、扭摆支架等构成。扭摆的刚度系数$k$=0.0 096 N/m,测量臂${l_1}$=100 mm,力臂${l_2}$=110 mm,最大摆角$\theta {\rm{ = 5}}^\circ $。根据以上参数及位移传感器测量精度,通过标定得可测量范围在0.4~335 μ$ {\rm{N}} \cdot {\rm{s}}$的单脉冲冲量[17]

      图  1  实验装置示意图

      Figure 1.  Schematic diagram of experimental equipment

    • 实验靶材为直径$10$ mm,厚$5$ mm的圆形纯金属靶材,纯度大于$99.9 $%。对靶材进行独立重复烧蚀实验,烧蚀靶坑的间距(即电动位移台步长)为$300\;$ μm。

    • 采用Nd:YAG激光器输出的能量范围在20~150 mJ的五种不同激光对七种金属材料进行辐照。图2中,激光通过分束镜后,一束激光通过透镜聚焦后作用于扭摆测量横梁上的金属靶材,通过位移传感器测得的线位移$s$可求得冲量$I$;另一束通过能量计测量激光能量$E$

      图  2  实验场景图

      Figure 2.  Experiment scene diagram

      表1所示,所选的七种金属材料的熔沸点及第一电离能各不相同,这会直接导致在相同的激光功率密度下,不同金属材料的推进性能参数不同。

      表 1  七种金属材料的熔沸点及第一电离能

      Table 1.  Melting boiling point and the first ionization energy of seven metal materials

      MetalMelting
      point/℃
      Boiling
      point/℃
      First ionization energy/
      kJ·mol−1
      Fe1 5352 750762.5
      Al6602 500577.5
      Cu1 0832 580745.5
      Ni1 4532 732737.1
      Au1 0622 966890.1
      Ag9612 210731.0
      Y1 5223 338600.0

      为了更准确地测得单个激光脉冲作用金属材料后的推进性能参数,在实验中,相同激光功率密度下,对不同金属材料均进行了多次重复烧蚀实验,通过图2中的分析天平,使用平均质量法[18]测得烧蚀质量$\Delta m$

    • 图3为在不同激光功率密度下,金属的单脉冲烧蚀质量。整体来看,Fe的单脉冲烧蚀质量最大,且随激光功率密度的增大,单脉冲烧蚀质量增大的趋势较为明显;Y的单脉冲烧蚀质量最小,且随激光功率密度增大,单脉冲烧蚀质量增大的趋势较为缓和。除Fe之外,金属Ni,Al和Cu的单脉冲烧蚀质量均达到${10^{ - 9}}$ kg的量级,烧蚀效果较好。

      图  3  单脉冲烧蚀量与激光功率密度的变化关系

      Figure 3.  Relationship between monopulse ablation and laser power density

      在短脉冲激光辐照下,金属的质量迁移主要为浅层气化机制。而金属的熔化、气化等相变过程与其对激光的吸收率直接相关。公式(4)为Hagen-Ruben公式,可计算金属对波长1 064 nm激光的吸收率[13]

      $$ A{(T)_{\rm{{Nd:YAG}}}}{\rm{ = 354}}{\rm{.67}}\sqrt {\rho (T)} $$ (4)

      式中:$A$为吸收率;$\;\rho $为电阻率;$T$为温度;

      由上式可知,金属的电阻率越大,它对波长1 064 nm激光的吸收率越高。表2$20$ ℃时,七种金属材料的电阻率。

      表 2  七种金属材料的电阻率(单位:10−8 Ω·m,20 ℃)

      Table 2.  Resistivity of seven metal materials (Unit: 10−8 Ω·m,20 ℃)

      MetalFeAlCuNiAuAgY
      Resistivity9.72.71.76.82.41.659.6

      由此可知,Y的电阻率最高,但由于Y的沸点为$3\;338$ ℃,导致Y的单脉冲烧蚀质量并不是最大,反而是七种金属材料中最小的;Fe,Ni,Al的沸点相近,均在$2\;500\sim 2\;750$ ℃的范围内,但Fe的电阻率最高,所以它对激光的吸收率最高,单脉冲烧蚀质量最大。

    • 金属在大气下受到高能激光的辐照,发生气化和质量迁移,形成的靶蒸气、等离子体的喷射膨胀及金属表面环境气体中的LSD波(LSD是激光维持的爆轰波)对靶表面施加反冲压力,作用于靶的压力脉冲(激光脉冲)很短,其宏观力学效应可以用冲量表征[19]

      图4为在不同激光功率密度下,金属材料的单脉冲冲量。由此可以看出,七种金属材料的单脉冲冲量随激光功率密度的增加而增加。Au的单脉冲冲量最大,在激光功率密度为$3.29 \times {10^{10}}\;{\rm{W}}/{\rm{c}}{{\rm{m}}^2}$时,最高单脉冲冲量达4 μN·s。随着激光功率密度增加而增大的趋势也最为显著。Fe和Ni的单脉冲冲量居中。

      图  4  单脉冲冲量与激光功率密度的变化关系

      Figure 4.  Relationship between monopulse impulse and laser power density

      表1表2可知Y的沸点($3\;338\; $ ℃)在七种金属材料中最高;Ag的电阻率在七种金属中最低,仅有$1.6 \times {10^{ - 8}}\;\Omega \cdot {\rm{m}}$,其对激光的吸收率最低。所以这两种金属材料相较而言难形成靶蒸气、等离子体的喷射及LSD波,所以Y和Ag的平均单脉冲冲量相对较差。由于大气对激光的衰减以及等离子屏蔽等效应,导致实验整体冲量数据偏小。

    • 图5为不同激光功率密度下,激光烧蚀金属材料的冲量耦合系数。由图中可看出,除Au外,其它六种金属材料的冲量耦合系数均有随激光功率密度增大先增加后减少的趋势,说明在实验过程中产生了等离子体屏蔽效应,这与文明等[20]所得的实验结果一致。

      图  5  冲量耦合系数与激光功率密度的变化关系

      Figure 5.  Relationship between impulse coupling coefficient and laser power density

      Cu,Au,Ni,Al,Fe五种金属材料的冲量耦合系数均值都在30 μN/W以上。Au的冲量耦合系数最大,在入射激光功率密度为$1.72 \times {10^{10}}\;{\rm{W}}/{\rm{c}}{{\rm{m}}^2}$时达到最高值40.7 μN/W。Ag是七种金属材料中冲量耦合系数最小的。

      图6为不同激光功率密度下,激光烧蚀金属材料的比冲。大气条件下,激光能量会有衰减,以及等离子体屏蔽效应,致使冲量偏低,导致比冲数据偏低。

      图  6  比冲与激光功率密度的变化关系

      Figure 6.  Relationship between specific impulse and laser power density

      实验中,七种金属材料的比冲均在100 s以上。Au的比冲相对较高,最高的比冲可达500 s左右,但是比冲受激光功率密度的变化影响较大。Al,Cu,Ni的比冲受激光功率密度的变化影响较小,平均比冲可达200 s以上。Fe和Ag在实验中的比冲相对较低。

    • 文中在大气条件下,采用波长1064 nm,10 ns脉宽的Nd:YAG激光器,在不同激光功率密度下对Al,Fe,Ni,Cu,Y,Ag,Au七种金属材料进行激光烧蚀推进性能的测试实验,得到它们的单脉冲烧蚀质量,平均单脉冲冲量,冲量耦合系数和比冲等四个推进性能参数。大气条件下,激光功率密度在$1.72 \times {10^{10}}\sim 3.29 \times $$ {10^{10}}\;{\rm{W}}/{\rm{c}}{{\rm{m}}^2}$范围内:

    • 表3为七种金属材料的平均单脉冲烧蚀质量与冲量。相同功率密度下,Fe的平均单脉冲烧蚀质量最大,约为1.6 μg。Cu, Al, Ni, Ag,Au, Y的平均单脉冲烧蚀量依次减小。Al,Fe,Ni三种金属材料的平均单脉冲冲量均值在2.5 μN·s左右,Y和Ag的平均单脉冲冲量相对较差。

      表 3  平均单脉冲烧蚀质量(μg)与冲量(μN·s)

      Table 3.  Average monopulse ablation mass (μg)and impulse (μN·s)

      MetalAlFeNiCuYAgAu
      $\overline {\Delta m} $0.71.60.51.30.20.70.4
      $\overline I $2.52.52.52.81.81.22.7

      由3.1及3.2分析可知,吸收率及熔沸点是影响激光烧蚀推进性能的重要因素。金属对激光的吸收率大,熔沸点低,其激光烧蚀阈值较低,进而会导致烧蚀质量较大,同时也会影响冲量的大小。

    • 冲量耦合系数是激光烧蚀靶材产生的冲量与入射激光能量的比值。激光辐照金属的过程中,随着脉冲时间及激光功率密度的增加,靶蒸气被电离,产生等离子体屏蔽效应,进而导致了冲量耦合系数的下降。在3.3节中提到,Au的冲量耦合系数并没有出现随激光功率密度的增大先增大后减小的现象,对Au的冲量耦合系数数据采用Phipps提出的以$E\lambda \sqrt {{t_p}} $为变元的流体力学为主导机制的烧蚀定标关系[19]进行拟合:

      $$ {C_m} = 5.83{A^{ - 1/8}}{(E\lambda \sqrt {{t_p}} )^{ - 1/4}} \;\;{\rm{(10^{-5}\;N/W)}} $$ (5)

      式中:$\lambda $为激光波长;${t_p}$为激光脉宽;

      得到的拟合关系如图7所示。

      图  7  金属金的冲量耦合系数定标关系

      Figure 7.  Scaling relation of impulse coupling coefficient of metal Au

      图7可看出,在Phipps提出的烧蚀定标关系下,Au的冲量耦合系数是会随着激光功率密度增大而减小。

    • 七种金属材料的比冲均在100 s以上,根据七种金属材料的比冲和冲量耦合系数可以计算激光烧蚀金属材料的能量转化效率:

      $$ \eta {\rm{ = }}\frac{g}{2}{C_m}{I_{sp}} $$ (6)

      式中:g=9.8 m/${{\rm{s}}^2}$

      得到七种金属材料在不同激光功率密度下的能量转化效率如图8所示。

      图  8  不同激光功率密度下的能量转化效率

      Figure 8.  Energy conversion efficiency under different laser power densities

      整体而言,激光烧蚀金属的能量转化效率在10%以下。Au的能量转化效率在七种金属材料中最高,平均能量转化效率可达6%以上,Ag的能量转化效率最低。

    • 文中在大气条件下进行了高能脉冲激光烧蚀Al,Fe,Ni,Cu,Y,Ag,Au七种金属材料的推进性能实验研究,分析了单脉冲烧蚀质量,单脉冲冲量,冲量耦合系数,比冲,能量转化效率等性能参数,结果表明:相同激光功率密度下,Au的激光烧蚀推进性能最优。在入射激光功率密度为$1.72 \times {10^{10}}\;{\rm{W}}/{\rm{c}}{{\rm{m}}^2}$时,冲量耦合系数的最高值达40.7 μN/W;在入射激光功率密度为${\rm{2}}{\rm{.98}} \times {10^{10}}\;{\rm{W}}/{\rm{c}}{{\rm{m}}^2}$时,比冲的最高值达500 s;平均能量转化效率在6%以上。

参考文献 (20)

目录

    /

    返回文章
    返回