留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镜面反射式激光跟踪干涉测长的测量方法研究

平少栋 傅云霞 张丰 任瑜 孔明

平少栋, 傅云霞, 张丰, 任瑜, 孔明. 镜面反射式激光跟踪干涉测长的测量方法研究[J]. 红外与激光工程, 2021, 50(12): 20210624. doi: 10.3788/IRLA20210624
引用本文: 平少栋, 傅云霞, 张丰, 任瑜, 孔明. 镜面反射式激光跟踪干涉测长的测量方法研究[J]. 红外与激光工程, 2021, 50(12): 20210624. doi: 10.3788/IRLA20210624
Ping Shaodong, Fu Yunxia, Zhang Feng, Ren Yu, Kong Ming. Study on measurement method of mirror reflection laser tracking interferometric length measurement[J]. Infrared and Laser Engineering, 2021, 50(12): 20210624. doi: 10.3788/IRLA20210624
Citation: Ping Shaodong, Fu Yunxia, Zhang Feng, Ren Yu, Kong Ming. Study on measurement method of mirror reflection laser tracking interferometric length measurement[J]. Infrared and Laser Engineering, 2021, 50(12): 20210624. doi: 10.3788/IRLA20210624

镜面反射式激光跟踪干涉测长的测量方法研究

doi: 10.3788/IRLA20210624
基金项目: 上海市“科技创新行动计划”高新技术领域项目(19511106500)
详细信息
    作者简介:

    平少栋, 男,硕士生,主要从事大尺寸测量等方面的研究

  • 中图分类号: TB921;TH711

Study on measurement method of mirror reflection laser tracking interferometric length measurement

  • 摘要: 为了解决镜面反射式激光跟踪干涉测长方法在不同尺寸长度标准溯源中缺乏有效的误差分析,测量效率低等问题,文中研究了平面镜调节分辨率、平面度引入的长度测量误差,并给出了针对不同长度的平面镜角度调节允许范围。建立了镜面反射式激光跟踪干涉测长模型,分析了该模型的测量不确定度来源,模拟仿真了平面镜角度调节的影响,并进行了坐标测量机长度测量比对实验和平面镜角度调节实验。实验表明:长度测量比对的En验证结果小于1,证明了长度测量不确定度的准确性。通过针对不同长度的平面镜角度调节实验,得到了测量不确定度为3 $ {\text{μm}} $ (长度1 m)和3.7 $ {\text{μm}} $ (长度2.5 m)的测量结果;同时,测量效率提高了56%,验证了此方法的准确性、高效性。文中方法实现了长度的高精度测量与测量不确定度分析。
  • 图  1  激光跟踪干涉测长模型

    Figure  1.  Model of laser tracking interferometric length measurement

    图  2  镜面反射式激光跟踪干涉测长原理

    Figure  2.  Principle of mirror reflection laser tracking interferometric length measurement

    图  3  平面镜偏差示意图

    Figure  3.  Plane mirror deviation

    图  4  $ \alpha $$\;\beta$的对应关系

    Figure  4.  Correspondence between $ \alpha $ and $\;\beta$

    图  5  平面度误差示意图

    Figure  5.  Flatness error

    图  6  $ U $$\;\beta$的变化规律

    Figure  6.  Variation trend of $ U $ with $\;\beta$

    图  7  $ U $随不同长度的变化规律

    Figure  7.  Variation of $ U $ with different length

    图  8  长度标准测量实验

    Figure  8.  Length standard measurement experiment

    图  9  长度偏差与测量不确定度

    Figure  9.  Length deviation and uncertainty of measurement

    表  1  En验证结果

    Table  1.   En verification result

    Interferometric length measurementCoordinate measuring machine
    $ L/{\text{mm}} $$ U/{\text{μm}} $$ {L_{ { { {P} }_{\text{1} } }{ { {P} }_{\text{2} } } } }/{\text{mm} } $$ {U_0}/{\text{μm}} $En
    1000.28331.11000.28252.60.3
    下载: 导出CSV

    表  2  角度调节验证结果

    Table  2.   Angle adjustment verification result

    $ L/{\text{mm}} $Adjustment strategyAngle $ \;\beta /({^ \circ } )$$ \overline M $/times$ \overline t /\min $$ \Delta L/{\text{μm}} $$ U/{\text{μm}} $

    1000
    Rough adjustment0.0421149.211.7
    This paper strategy0.00969101.23.0
    Optimal state0.000318231.1
    Rough adjustment0.2746157.68.1
    2500This paper strategy0.029310132.63.7
    Optimal state0.000521283.1
    下载: 导出CSV
  • [1] Ye S H, Zhu J G, Zhang Z L, et al. Status and development of large-scale coordinate measurement research [J]. Acta Metrologica Sinica, 2008, 29(4A): 1-6. (in Chinese)
    [2] Li M, Yu J P. Status and development of geometric measurement in industry [J]. Chinese Journal of Scientific Instrument, 2017, 38(12): 2959-2971. (in Chinese)
    [3] Estler W T, Edmundson K L, Peggs G N, et al. Large-scale metrology-an updata [J]. CIRP Annals - Manufacturing Technology, 2002, 51(2): 587-609. doi:  10.1016/S0007-8506(07)61702-8
    [4] He J, Zhang F M, Zhang H D, et al. Multilateral laser tracking system self-calibration method based on spherical center fitting [J]. Infrared and Laser Engineering, 2020, 49(8): 20190438. (in Chinese) doi:  10.3788/IRLA20190438
    [5] Wu B, Xu Y, Yang F T, et al. 3 D coordinate measuring system based on laser tracking absolute length measurement multilateral method [J]. Infrared and Laser Engineering, 2018, 47(8): 0806007. (in Chinese) doi:  10.3788/IRLA201847.0806007
    [6] Ma L Q, Wang L D, Cao T Z, et al. A large-scale laser plane calibration system [J]. Measurement Science and Technology, 2007, 18(6): 1768. doi:  10.1088/0957-0233/18/6/S16
    [7] Xie Z W, Lin J R, Zhu J G, et al. Accuracy enhancement method for coordinate control field based on space length constraint [J]. Chinese Journal of Lasers, 2015, 42(1): 0108005. (in Chinese) doi:  10.3788/CJL201542.0108005
    [8] Guo L Z, Xiao X P, Wang G M, et al. Calibration of fix-length corner-cube prism length standard [J]. Journal of Astronautic Metrology and Measurement, 2020, 40(4): 13-17. (in Chinese)
    [9] Lin J R, Zhu J G, Zhang H L, et al. Field evaluation of laser tracker angle measurement error [J]. Chinese Journal of Scientific Instrument, 2012, 33(2): 463-468. (in Chinese) doi:  10.3969/j.issn.0254-3087.2012.02.032
    [10] Wang L, Muralikrishnan B, Lee V, et al. Methods to calibrate a three-sphere scale bar for laser scanner performance evaluation per the ASTM E3125-17 [J]. Measurement, 2020: 152(C): 107274. doi:  https://doi.org/10.1016/j.measurement.2019.107274
    [11] Zheng J H, Miao D J, Li J S, et al. Self-calibration algorithm for laser multilateral coordinate measurement system using standard length method [J]. Acta Metrologica Sinica, 2019, 40(1): 64-70. (in Chinese) doi:  10.3969/j.issn.1000-1158.2019.01.10
    [12] Ren Y, Liu F F, Zhang F, et al. Evaluation of uncertainty in multilateration with laser tracker [J]. Optics and Precision Engineering, 2018, 26(10): 2415-2422. (in Chinese) doi:  10.3788/OPE.20182610.2415
    [13] Ren Y, Liu F F, Fu Y X, et al. Placement optimization of laser multilateration network [J]. Laser & Optoelectronics Progress, 2019, 56(1): 011201. (in Chinese)
    [14] Xu Y M, Zheng Q, Guan X. Precision analysis of leica AT960 absolute laser tracker [J]. Journal of Geomatics, 2020, 45(1): 8-12. (in Chinese)
    [15] Zhan Z Y, Gan X C Ma L Q. A collaborative measurement networking method between laser tracker and iGPS [J]. Measurement & Control Technology, 2019, 38(7): 79-83. (in Chinese)
    [16] Conte J, Santolaria J, Majarena A C, et al. Identification and kinematic calculation of laser tracker errors [J]. Procedia Engineering, 2013, 63: 379-387. doi:  10.1016/j.proeng.2013.08.190
    [17] Sun W, Miao D J, Li J S, et al. Influence of system parameters calibration process on measurement uncertainty of multilateral coordinate measurement system [J]. Chinese Journal of Scientific Instrument, 2020, 41(11): 50-57. (in Chinese)
  • [1] 王博, 董登峰, 高兴华, 周维虎.  基于主动红外视觉探测的激光跟踪仪目标跟踪恢复方法 . 红外与激光工程, 2021, 50(4): 20200254-1-20200254-9. doi: 10.3788/IRLA20200254
    [2] 何俊, 张福民, 张画迪, 曲兴华.  基于球心拟合的多边激光跟踪系统自标定方法 . 红外与激光工程, 2020, 49(8): 20190438-1-20190438-7. doi: 10.3788/IRLA20190438
    [3] 王聪, 陈佳夷, 栗孟娟, 王海超, 李斌.  基于干涉测量的Ф1.3 m非球面反射镜定心 . 红外与激光工程, 2020, 49(1): 0113001-0113001(6). doi: 10.3788/IRLA202049.0113001
    [4] 杨自鹏, 刘敏, 周佑君, 董鹏, 杨传成.  异型载荷适配器工艺方案及精度测量方法研究 . 红外与激光工程, 2019, 48(S1): 72-77. doi: 10.3788/IRLA201948.S117001
    [5] 丁煜, 陈磊, 王志华, 朱文华, 刘致远.  电调谐波长移相干涉术 . 红外与激光工程, 2018, 47(5): 506003-0506003(7). doi: 10.3788/IRLA201847.0506003
    [6] 安其昌, 张景旭, 杨飞, 赵宏超.  GSSMP转动精度的测量与标定 . 红外与激光工程, 2018, 47(9): 917004-0917004(7). doi: 10.3788/IRLA201847.0917004
    [7] 杨振, 沈越, 邓勇, 李丛.  基于激光跟踪仪的快速镜面准直与姿态测量方法 . 红外与激光工程, 2018, 47(10): 1017001-1017001(6). doi: 10.3788/IRLA201847.1017001
    [8] 徐均琪, 苏俊宏, 葛锦蔓, 基玛 格拉索夫.  光学薄膜激光损伤阈值测量不确定度 . 红外与激光工程, 2017, 46(8): 806007-0806007(7). doi: 10.3788/IRLA201746.0806007
    [9] 安其昌, 张景旭, 杨飞, 孙敬伟.  GSSM系统抖动测量误差分析 . 红外与激光工程, 2017, 46(2): 217002-0217002(7). doi: 10.3788/IRLA201746.0217002
    [10] 王宇飞, 达争尚.  径向剪切干涉波面重构的数值模拟分析 . 红外与激光工程, 2016, 45(3): 317001-0317001(5). doi: 10.3788/IRLA201645.0317001
    [11] 董登峰, 程智, 周维虎, 纪荣祎, 刘鑫.  激光跟踪仪目标脱靶量精密探测方法 . 红外与激光工程, 2016, 45(6): 617002-0617002(7). doi: 10.3788/IRLA201645.0617002
    [12] 洪天琦, 黄喆, 杨凌辉, 郭思阳, 邹剑, 叶声华.  外部测量装置的捷联惯导对准方法 . 红外与激光工程, 2016, 45(5): 531002-0531002(5). doi: 10.3788/IRLA201645.0531002
    [13] 李丹妮, 呼丹, 王劲松, 张继明, 安志勇.  火炮偏离角测量数字化系统 . 红外与激光工程, 2016, 45(3): 317003-0317003(5). doi: 10.3788/IRLA201645.0317003
    [14] 时光, 王文.  高精度双干涉光路调频连续波激光绝对测距系统 . 红外与激光工程, 2016, 45(8): 806001-0806001(5). doi: 10.3788/IRLA201645.0806001
    [15] 郑权, 韩志刚, 陈磊.  近红外谱域显微干涉仪的位移传感特性研究 . 红外与激光工程, 2016, 45(10): 1017002-1017002(7). doi: 10.3788/IRLA201645.1017002
    [16] 王亚丽, 魏振忠, 张广军, 邵明伟.  视觉引导激光跟踪测量系统的Cayley变换校准方法 . 红外与激光工程, 2016, 45(5): 517001-0517001(5). doi: 10.3788/IRLA201645.0517001
    [17] 肖文健, 马东玺, 陈志斌, 张勇, 肖程, 秦梦泽.  大尺寸空间角测量系统光轴指向不确定度评定 . 红外与激光工程, 2016, 45(11): 1118004-1118004(7). doi: 10.3788/IRLA201645.1118004
    [18] 冯晓宇, 宗肖颖.  一种去除拼接干涉图中累积误差的简单方法 . 红外与激光工程, 2014, 43(3): 997-1001.
    [19] 闫公敬, 张宪忠, 李柱.  子孔径拼接检测光学平面反射镜技术 . 红外与激光工程, 2014, 43(7): 2180-2184.
    [20] 沈华, 张英聪, 朱日宏.  基于光热位移原理的KDP晶体光吸收系数干涉测量方法的数学模型及结构参数优化 . 红外与激光工程, 2013, 42(12): 3353-3357.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  12
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-30
  • 修回日期:  2021-11-16
  • 刊出日期:  2021-12-31

镜面反射式激光跟踪干涉测长的测量方法研究

doi: 10.3788/IRLA20210624
    作者简介:

    平少栋, 男,硕士生,主要从事大尺寸测量等方面的研究

基金项目:  上海市“科技创新行动计划”高新技术领域项目(19511106500)
  • 中图分类号: TB921;TH711

摘要: 为了解决镜面反射式激光跟踪干涉测长方法在不同尺寸长度标准溯源中缺乏有效的误差分析,测量效率低等问题,文中研究了平面镜调节分辨率、平面度引入的长度测量误差,并给出了针对不同长度的平面镜角度调节允许范围。建立了镜面反射式激光跟踪干涉测长模型,分析了该模型的测量不确定度来源,模拟仿真了平面镜角度调节的影响,并进行了坐标测量机长度测量比对实验和平面镜角度调节实验。实验表明:长度测量比对的En验证结果小于1,证明了长度测量不确定度的准确性。通过针对不同长度的平面镜角度调节实验,得到了测量不确定度为3 $ {\text{μm}} $ (长度1 m)和3.7 $ {\text{μm}} $ (长度2.5 m)的测量结果;同时,测量效率提高了56%,验证了此方法的准确性、高效性。文中方法实现了长度的高精度测量与测量不确定度分析。

English Abstract

    • 大尺寸测量广泛应用于航空航天、汽车舰船等复杂环境、测量空间范围大、干扰因素多的大型高端装备制造现场[1-5]。长度标准作为大尺寸测量现场几何量溯源的最常用的标准器,在组合测量的精度验证、网络化测量仪器的外参标定中发挥重要作用,正确溯源其参考长度和评定不确定度是确保大尺寸测量过程量值统一、结果可靠的关键,是保证大型高端装备制造的重要前提和基础[6-8]。传统坐标测量机测量1 m及以下的长度标准,不确定度可达微米量级,但测量大于1 m的长度标准,其不确定度往往只能达到十几微米甚至几十微米,难以满足大尺寸长度标准高精度的溯源需求[8],因此研究一种面向大尺寸长度标准的测量方法具有实际意义。

      目前,激光跟踪仪干涉测长的精度远高于角度测量精度[9],且其测量轴线与长度标准器的两球心连线长度重合,符合阿贝原则的特点,越来越多国内外学者研究激光跟踪干涉测长的方法测量长度标准。天津大学谢政委[7]等人利用激光跟踪干涉测长构建长度标准,但其直接调整激光跟踪仪位置的方式很难达到激光跟踪仪原点与长度标准两基准点三点共线以实现激光跟踪干涉测长。美国国家标准技术局(NIST)研究团队[10]引入平面镜反射激光束,研究镜面反射式激光跟踪干涉测长方法用于测量两基准点间的长度,该方法更易调整跟踪仪原点与两基准点三点共线。中国计量大学郑继辉[11]等人同样采用镜面反射式激光跟踪干涉测长方法测量长度标准,并应用于激光多边法坐标测量的自标定算法。但目前的研究只停留在镜面反射式激光跟踪干涉测长方法的实际应用,缺乏对引入平面镜后产生的长度测量误差的研究,导致测量结果不完整,测量方法操作复杂,效率低下,无法同时兼顾测量精度和测量效率。

      为了解决上述问题,文中基于镜面反射式激光跟踪干涉测长原理建立了长度测量模型,研究平面镜调节分辨率、平面度引入的长度测量误差,并分析仪器误差、环境干扰及测量重复性等误差因素,量化长度测量不确定度分量。通过平面镜角度调整仿真实验,给出了针对不同长度的平面镜角度调节允许范围。通过坐标测量机长度测量的比对实验和平面镜角度调节验证实验,验证测量不确定度的准确性,证明应用文中给出的平面镜角度调节允许范围进行长度测量具有高效性。

    • 长度标准器以两基准点球心连线为长度标准。如图1所示,设长度标准两端基准点为P1P2,激光跟踪仪原点位置为O,原点OP1P2连线夹角为$ \beta $,由余弦定理可得长度标准$ L $的测量模型如下式:

      图  1  激光跟踪干涉测长模型

      Figure 1.  Model of laser tracking interferometric length measurement

      $$ L = \sqrt {l_1^2 + l_2^2 - 2{l_1}{l_2}\cos \beta } $$ (1)

      式中:$ {l_1},{l_2} $为基准点P1, P2由激光跟踪仪干涉测长测得的观测值。

      根据测量不确定度传播律(GUM法) [12]$ L $的合成标准不确定度为:

      $$ {u_L} = \sqrt {{{\left( {\frac{{\partial L}}{{\partial {l_1}}}} \right)}^2} \cdot u_{{l_1}}^2 + {{\left( {\frac{{\partial L}}{{\partial {l_2}}}} \right)}^2} \cdot u_{{l_2}}^2 + {{\left( {\frac{{\partial L}}{{\partial \beta }}} \right)}^2} \cdot u_\beta ^2} $$ (2)

      式中:$ {u_{{l_1}}},{u_{{l_2}}},{u_\beta } $为输入量$ {l_1},{l_2},\beta $的标准不确定度;$\dfrac{\partial L}{\partial {l}_{1}}, $$ \dfrac{\partial L}{\partial {l}_{2}}, \dfrac{\partial L}{\partial \beta }$为输入量$ {l_1},{l_2},\beta $$ L $的传递系数。

      $$ \begin{gathered} \frac{{\partial L}}{{\partial {l_1}}} = \frac{{{l_1} - {l_2} \cdot \cos \beta }}{{{{\left( {l_1^2 - 2{l_1} \cdot {l_2} \cdot \cos \beta + l_2^2} \right)}^{1/2}}}} \hfill \\ \frac{{\partial L}}{{\partial {l_2}}} = \frac{{{l_2} - {l_1} \cdot \cos \beta }}{{{{\left( {l_1^2 - 2{l_1} \cdot {l_2} \cdot \cos \beta + l_2^2} \right)}^{1/2}}}} \hfill \\ \frac{{\partial L}}{{\partial \beta }} = \frac{{{l_1} \cdot {l_2} \cdot \sin \beta }}{{{{\left( {l_1^2 - 2{l_1} \cdot {l_2} \cdot \cos \beta + l_2^2} \right)}^{1/2}}}} \hfill \\ \end{gathered} $$ (3)

      激光跟踪仪的测角不确定度远大于测距不确定度[13-14],为了获得最小的长度测量不确定度$ {u_L} $,应使$ \partial L/\partial \beta $尽可能小。当$ \beta $为0时,即OP1P2三点共线,$ {u_L} $最小。此时,待测长度即为激光干涉测长模式测得的长度$ {L_0} $,达到了最佳测量状态,$ {l_{{P_1}}},{l_{{P_2}}} $为共线时跟踪仪干涉测长测得P1P2的观测值。

      $$ {L_0} = {l_{{P_1}}} - {l_{{P_2}}} $$ (4)

      为了解决激光跟踪仪较为笨重,位置调整难度大的问题,镜面反射式激光跟踪干涉测长方法将平面镜置于基准点P1前侧,调节平面镜的俯仰和偏转旋钮,实时监控测量软件中两基准点的夹角,直至夹角尽可能接近于0,实现O', P1 P2三点共线的最佳测量状态,即仅用激光跟踪干涉测长对两基准点P1P2进行不断光连续测量。测量原理如图2所示,O’表示激光跟踪仪的镜像原点。

      图  2  镜面反射式激光跟踪干涉测长原理

      Figure 2.  Principle of mirror reflection laser tracking interferometric length measurement

    • 由于平面镜存在调节分辨率、平面度等误差因素,激光束经镜面反射无法完全达到OP1',P2'三点共线的理想测量状态,产生原点与两基准点连线的夹角$ \beta $、光程差$ \delta $,从而引起长度测量误差。图3为平面镜角度偏差示意图,P1',P2'表示两基准点P1P2的虚像。

      图  3  平面镜偏差示意图

      Figure 3.  Plane mirror deviation

      (1)按典型布局,O到平面镜中心距离约为3000 mm,平面镜中心到P1距离约为100 mm,则平面镜角度偏差$ \alpha $与夹角$ \beta $的关系如图4所示。

      图  4  $ \alpha $$\;\beta$的对应关系

      Figure 4.  Correspondence between $ \alpha $ and $\;\beta$

      图4所示,$ \alpha $$\;\beta$近似呈线性关系,随着长度变长,斜率增加趋于平缓,取长度为8000 mm的斜率作为趋近值$ k{\text{ = 1}}{\text{.4}} $,则:

      $$ \beta = k \times \alpha = 1.4\alpha $$ (5)

      通常经过精细调整后,调节分辨率引起的角度偏差$ \alpha $可控制在0.005°以内,则由此引入的标准不确定度分量$ {u_1} $为:

      $$ {u_1} = \frac{{\partial L}}{{\partial \beta }} \times {u_\beta } $$ (6)

      式中:${u_\beta } = k{u_\alpha } = 1.4 \times \dfrac{1}{2} \times 0.005 \times \dfrac{1}{{\sqrt 3 }} \approx {0.002^ \circ }$

      (2)图5为平面度引起的光程差示意图,虚线部分表示增加的光程差$ \delta $$ \sigma $表示平面镜的平面度。

      图  5  平面度误差示意图

      Figure 5.  Flatness error

      设激光在镜面的入射角为$ \gamma $,根据光程差$ \delta $、平面度$ \sigma $和入射角$ \gamma $三者的几何关系,增加的光程差可由下式计算:

      $$ \delta = 2 \times \frac{\sigma }{{\cos \gamma }} $$ (7)

      由此引入的标准不确定度分量$ {u_2} $为:

      $$ {u_2} = \frac{\delta }{{\sqrt 3 }} = \frac{{2\sigma }}{{\sqrt 3 \cos \gamma }} $$ (8)

      由于平面镜调整机构的限制,入射角范围约为$ \left( {0,{{45}^ \circ }} \right) $。为保证较高的测量精度且标准不确定度分量不被低估,应选择较大的入射角,较小的平面度进行计算。当$ \gamma = {45^ \circ } $$ \sigma = \lambda /4 $时,标准不确定度分量约为${u_2} = 0.259~{\text{μm}}$

    • (1)激光跟踪仪干涉测长的仪器误差是长度测量的主要误差来源,以Leica AT960跟踪仪为例[14],其干涉测长的最大允许误差为$\pm 0.5~{\text{μm/m}}$,则由此引入的标准不确定度分量为:

      $$ {u_3} = {u_{{\text{IFM}}}} = \frac{{0.5 \times {{10}^{ - 6}} \times {L_0}}}{{\sqrt 3 }} $$ (9)

      式中:$ {L_0} $为激光干涉测长模式测得的长度。

      (2)实际测量中,激光跟踪仪测角的仪器误差是长度测量的误差来源之一,以Leica AT960跟踪仪为例[14],其角度测量最大允许误差为$\pm ( 15\;{\text{μm}} + 6\;{\text{μm/m}}$),则角度测量的标准不确定度为:

      $$ {u_\theta } = {u_\varphi } = \arcsin \left( {\frac{{15 + 6l}}{l} \times {{10}^{ - 6}}} \right) $$ (10)

      设两基准点的球坐标值分别为${{{P}}_1}\left( {{l_1},{\theta _1},{\varphi _1}} \right)$${{{P}}_2} $$ \left( {{l_2},{\theta _2},{\varphi _2}} \right)$,则两基准点距离为[15-16]

      $$ \begin{split} &{L^2} = l_1^2 + l_2^2 \hfill \\& - 2{l_1}{l_2}\left( {\sin {\varphi _1}\sin {\varphi _2}\cos \left( {\left| {{\theta _1} - {\theta _2}} \right|} \right) + \cos {\varphi _1}\cos {\varphi _2}} \right) \hfill \end{split}$$ (11)

      则由此引入的标准不确定度分量$ {u_4} $为:

      $$ {u_4} = \sqrt {{{\left( {\frac{{\partial L}}{{\partial {\varphi _1}}}} \right)}^2}u_{_\varphi }^2 + {{\left( {\frac{{\partial L}}{{\partial {\varphi _2}}}} \right)}^2}u_{_\varphi }^2 + {{\left( {\frac{{\partial L}}{{\partial {\theta _1}}}} \right)}^2}u_{_\theta }^2 + {{\left( {\frac{{\partial L}}{{\partial {\theta _2}}}} \right)}^2}u_{_\theta }^2} $$ (12)

      (3)温度、湿度和压力等外部环境干扰造成大气折射率变化,会引起跟踪仪产生测长误差[12,17]。考虑到跟踪仪带有环境补偿单元,且实验室环境温度为(20±0.5) ℃,一次测量时间较短,环境参数近似恒定,因此由环境干扰引入的标准不确定度忽略不计。

      (4)由长度$ L $$ n $次测量值求得单次测量的标准差为:

      $$ {\sigma _L} = \sqrt {\frac{{\displaystyle\sum\limits_{i = 1}^n {{{\left( {{L_i} - \bar L} \right)}^2}} }}{{n - 1}}} $$ (13)

      式中:$ {L_i} $为第$ i $次测量的长度值;$ \bar L $$ n $次测量的平均长度。则长度测量重复性引起的标准不确定度分量$ {u_5} = {\sigma _L} $。由上述各不确定度分量合成长度测量不确定度$ U $k=2)。

    • 由2.1节可知,平面镜角度调节偏差导致了激光跟踪仪测得两基准点产生夹角$\;\beta$,进而产生长度测量误差,因此合理地调节平面镜角度从而限制夹角$\;\beta$,有利于减小测量不确定度$ U $并提高测量效率。

      (1)固定长度$ L $$ U $$\;\beta$变化的仿真实验

      以典型布局下测量$L = 1\;{\text{m}}$为例,以如图2所示的最佳测量状态为初始状态。令$\;\beta$分别沿水平和垂直两个方向以0.005°逐渐偏离初始状态,进行了20次平面镜角度的调节仿真。随着$\;\beta$变化,引起的长度测量不确定度$ U $k=2)变化规律如图6所示。

      图  6  $ U $$\;\beta$的变化规律

      Figure 6.  Variation trend of $ U $ with $\;\beta$

      图6可知,在水平和垂直两个方向上,$\;\beta$$ U $的影响程度相同,均近似呈对称的二次函数关系,$\;\beta$为0时$ U $最小,为1.1 µm,$ U $$\;\beta$绝对值增大而增大;根据大尺寸测量现场几何量溯源需求,$ U $阈值设为3 µm,只需调整$\;\beta$在(−0.01°~0.01°)范围即可满足。

      (2)固定夹角$\;\beta$$ U $$ L $变化的仿真实验

      保持激光跟踪仪、平面镜和基准点1的位置不变,移动基准点2,使$ L $以间隔0.25 m从1 m增加至6 m,仿真$\;\beta = {0^ {\circ} }\sim{0.05^ {\circ} }$下长度测量不确定度的变化规律,结果如图7所示。

      图  7  $ U $随不同长度的变化规律

      Figure 7.  Variation of $ U $ with different length

      图7可知,随长度变长,$\;\beta$$ U $的影响逐渐减小,对于1~2.5 m的长度,$ U $主要由$\;\beta$引入,为使$ U $不大于3 µm,须使$ \left| \beta \right| \leqslant {0.01^ \circ } $;对于2.5 m及以上的长度,$ U $主要由激光跟踪干涉测长引入,且随长度变长,$ U $趋近于最佳测量状态$ \left( {\beta {\text{ = }}{0^ \circ }} \right) $的测量不确定度,为使$ \beta $$ U $的影响可忽略(占比不超过1/5),须使$ \left| \beta \right| \leqslant {0.03^ \circ } $

      综上,给出了以下针对不同长度的平面镜角度调节允许范围:

      (1)针对1~2.5 m的长度,调整平面镜使得激光跟踪仪测得两基准点的夹角在(−0.01°~0.01°)范围即可;

      (2)针对2.5 m以上的长度,调整平面镜使得激光跟踪仪测得两基准点的夹角在(−0.03°~0.03°)范围即可。

    • 通过两个实验验证文中的长度测量不确定度和仿真实验结果。实验1验证文中测量不确定度的准确性;实验2验证平面镜角度调节的准确性、高效性。

    • 坐标测量机长度测量比对实验如图8所示,调整平面镜至近似最佳测量状态($ {\theta _1}{\text{ = }}{\theta _2},{\varphi _1} = {\varphi _2} $),采用Leica AT960跟踪仪不断光连续测量P1P2,计算两点间的长度,重复测量60次。按文中方法评定长度测量不确定度,计算60次测量的平均值及偏差,并与测量不确定度比较,结果如图9所示。

      图  8  长度标准测量实验

      Figure 8.  Length standard measurement experiment

      图  9  长度偏差与测量不确定度

      Figure 9.  Length deviation and uncertainty of measurement

      图9中,60次测量的长度与平均值的偏差均包含在长度测量不确定度以内。

      相同状态下,采用坐标测量机对P1P2进行采点测量,给出长度${L_{{{{P}}_{\text{1}}}{{{P}}_{\text{2}}}}}$及其测量不确定度$ {u_{{L_0}}} $,计算长度$ L $${L_{{{{P}}_{\text{1}}}{{{P}}_{\text{2}}}}}$En

      $$ {E_{\text{n}}} = \frac{{\left| {L - {L_{{{{P}}_{\text{1}}}{{{P}}_{\text{2}}}}}} \right|}}{{\sqrt {u_L^2 + u_{{L_0}}^2} }} $$ (14)

      结果如表1所示。

      表 1  En验证结果

      Table 1.  En verification result

      Interferometric length measurementCoordinate measuring machine
      $ L/{\text{mm}} $$ U/{\text{μm}} $$ {L_{ { { {P} }_{\text{1} } }{ { {P} }_{\text{2} } } } }/{\text{mm} } $$ {U_0}/{\text{μm}} $En
      1000.28331.11000.28252.60.3

      表1中,长度测量对比的En小于1,即两种测量方法的测量结果的不确定度均在各自评定的不确定度范围内,比对结果满意。

      图9表1表明文中所述方法评定的测量不确定度准确、可靠。

    • 以测量1 m和2.5 m的长度为例,第一步仅肉眼观察,粗调平面镜,使激光在平面镜上的反射点与长度标准器的P1P2近似共线,记录此时表2中相关数据;第二步按照2.3节的角度调节,由测量软件读取两基准点的夹角$\;\beta$,微调平面镜的偏转与俯仰旋钮,直到$\;\beta$分别小于0.01°(L=1 m)和0.03°(L=2.5 m),记录数据;第三步精调平面镜,继续多次反复交替微调平面镜的偏转和俯仰,直至$\;\beta$接近于0°,达到如图2所示的最佳测量状态,记录数据。重新放置平面镜,重复三次上述步骤,计算平均调整次数$ \overline M $和平均用时$ \overline t $。将每一步测得的长度与最佳测量状态的长度计算差值$ \Delta L $,采用文中方法评定三个状态下的长度测量不确定度(k=2),结果如表2所示。

      表 2  角度调节验证结果

      Table 2.  Angle adjustment verification result

      $ L/{\text{mm}} $Adjustment strategyAngle $ \;\beta /({^ \circ } )$$ \overline M $/times$ \overline t /\min $$ \Delta L/{\text{μm}} $$ U/{\text{μm}} $

      1000
      Rough adjustment0.0421149.211.7
      This paper strategy0.00969101.23.0
      Optimal state0.000318231.1
      Rough adjustment0.2746157.68.1
      2500This paper strategy0.029310132.63.7
      Optimal state0.000521283.1

      采用文中给出的平面镜角度调节允许范围,得到的长度测量误差均小于3 ${\text{μm}}$,调整次数比最佳测量状态时减少了约50%,用时减少了约56%。而仅粗调平面镜得到的长度偏差近10 ${\text{μm}}$,不确定度无法满足溯源需求。综上,文中给出的平面镜角度调节允许范围可同时兼顾测量精度和测量效率,提高了镜面反射式激光跟踪干涉测长方法的测量效率,具有准确性、高效性。

    • 文中建立了镜面反射式激光跟踪干涉测长模型,研究了平面镜调节分辨率、平面度等引入的长度测量误差,分析了该模型的测量不确定度来源。通过平面镜角度调节模拟仿真,给出了一种兼顾测量精度和测量效率的平面镜角度调节允许范围。进行了坐标测量机长度测量比对实验,证明了长度测量不确定度的准确性。并进行了平面镜角度调节验证实验,验证了应用文中给出的平面镜角度调节允许范围进行长度测量具有准确性、高效性。

参考文献 (17)

目录

    /

    返回文章
    返回